OBSTACLE AVOIDANCE PATH
PLANNING BY THE EXTENDED
VGRAPH ALGORITHM

NAGW /333

By:

H. Chung
N.

C.
G.N. Saridis

Department of Electrical, Computer and Systems Engineering
Department of Mechanical Engineering, Aeronautical
Engineering & Mechanics
Rensselaer Polytechnic Institute
Troy, New York 12180-3530

CIRSSE Document #12

OBSTACLE AVOIDANCE PATH PLANNING
BY THE EXTENDED VGRAPH ALGORITHM
by

C. H. Chung and G. N. Saridis

Robotics and Automation Laboratory
Department of Electrical, Computer and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12180-3390

January 1989

CONTENTS

Page

LIST OF TABLES i
LIST OF FIGURES v
ABSTRACT . .. v
1. INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Review 3

2. METHODOLOGY 6
2.1 The Interference Detection 6

2.2 The Grown Space Obstacles 8

2.3 The Rotational Grown Space Obstacles 13

2.4 The VGraph Algorithm 26

2.5 The Graph Search Algorithm 31

2.6 The Orthogonal Projection Method 35

2.7 The Recursive Compensation Algonithm 42

3. PROBLEM STATEMENT, PRELIMINARY RESULTS AND
PROPOSED WORK 56

3.1 Problem Statement, 36

3.2 Preliminary Results 57

3.3 Proposed Work 60
REFERENCES 61
Appendix A: Simulation of the VGraph Algorithm 66
Appendix B: I/O Files for the VGraph Algorithm 101
Appendix C: Simulation of the Rotational GSpace | 108
Appendix D: I/O Files for the Rotational GSpace | 116
Appendix E: Simulation of the Branch and Bound Algodthm 120
Appendix F: I/O Files for the Branch and Bound Algorithm 126
Appendix G: Simulation of the RCA 27
Appendix H: I/O Tiles for the RCA o
Appendix I: Simulation of the OPM| 137
Appendix J: [/O Files for the OPM 148

LIST OF TABLES

Page
Table 2.4.1 Simulation result of the VGraph Algorthm 2%
Table 2.7.1 Euclidean distance and Computing time 45
Table 3.2.1 Simulation result of the VGraph Algorithm 58

Table 3.2.4 Euclidean distance and Computing time 60

1

Fig.

[0 2 I I ST O I (V]
S VI I S
O 19 — 19

9
2
—

3]

[3%]
[4%]

19 1D 10 19 9 N Y

[SC T I T TG NG (G 0 T S O I
“I“I“I*I*ICDG)C)O)@!L-!#‘CQ

[S I O B SV

W o L L o o

e €2 12 = 1O = b= 4= O WO —) G Ut e 9 19—

T A O I

13

LIST OF FIGURES

Page

Interference Detection 5
Dead Node T
A descnption of Workspace & Q
A description of GSpace Obstacles for Workspace A 10
The Grown Space Obstacies for Workspace A . . . -
Data structure for Workspace A 12
A descoption of Workspace B 15
A description of the rotational GSpace Obstacles 16
The rotational Grown Space Obstacles LT
Data structure of the rotational GSpace Obstacles 18
Workspace C for the Problem Statement 2.3 C
The rotational GSpace Obstacles with 0 sliced :
The rotational GSpace Obstacles with I sliced 5e
The rotational GSpace Obstacles with T sliced 22
The rotational GSpace Obstacles with J sliced 23
0 The rotational GSpace Obstacles with 231 siiced 24
1 The rotational GSpace Obstacles with %1-' sliced 23
A VGraph for Workspace A | 29
The collision-free shortest path for Workspace A 30
A description of Workspaca D 37
A description of thres orthogonal projections 38
A description of Grown Space Obstacles in 3D 39
A reconstruction of Grown Space Obstacles in 3D 40
The Grown Space Obstacles of Workspace D 4]
The path calculated by the VGraph algonthm 31
The first compensation by the RCA | 32
The second compensation by the RCA 33
The final path by the RCA| 34
The Euclidean distance by the RCA 33

—

ABSTRACT

In many path planning algorithms. attempts are made to optimize
the path between the start and the goal in terms of Fuclidean disiance.
Since the moving object is shrunk to a point in the Configuration Space,
Findpath can be formulated as a graph searching problem. This is .
known as the VGraph Algorithm.

Lozano-Pérez points out the drawbacks of the VGraph Algorithm.
The first drawback is related with rotation of 2 moving object. This
drawback can be solved by using the sliced projection method. However,
the VGraph Algorithm has serious drawbacks when the obstacles are
three-dimensional. The Eztended VGraph Algorithm is proposed to
solve the drawbacks of the VGraph Algorithm by using the Recursive
Compensation Algorithm. The Recursive Compensation Algorithm is
proposed to find the collision-free shortest path in 3D and it is proved to
guarantee the convergence to the shortest path in 3D without incic_cing
the complexity of the VGraph.

1. INTRODUCTION

1.1 Motivation

In many path planning algorithms, attempts are made to optinuze
the path between the start and the goal in terms of Euclidean dis-
tance. In the Configuration Space 9], the moving object is shrunk to
a Configuration Point, while the stationary obstacles are expanded to
fill all space where the presence of the Configuration Point would im-
Ply a collision of the object with obstacles. Therefore, Findpath (29]
can be formulated as a graph searching problem. The graph is formed
by connecting all pairs of visible vertices of the Configuration Snace
Obstacles.

Consider the VGraph Algorithm for a moving object to find the
collision-free shortest path in a workspace with some obstaciu:. A lo
of work has been done in this field, which has the following design steps:

o Build the Grown Space Obstacles.
* Find the visible vertices by detecting interferences.
e Build the VGraph with a set of the visible vertices.

o Search the V'Graph by the graph search algorithm.

The shortest path from the start to the goal in this VGraph Alge
rithm is the shortest path among the obstacles in 2D. However. Le
path in 3D by the VGraph dlgorithm (28] {291 whose node set contains
only vertices of the Grown Space Obstacles is not guaranteed to be
the shortest collision free path, because the shortest path may involve
going through points on the edges of the Grown Space Obstacles in 3D.
Lozano-Pérez (29] points out the drawbacks of the VGraph Algorithm.
The first drawback is related with the rotation of a moving object.
Since the VGraph Algorithm require moving an object along obstacle
boundaries. shortest paths are very susceptible to inaccuracies in the
object models. This drawback can be solved by using the sliced projec-
tion method (28] [29] [30]. However. the VGraph Algorithm has.serious
drawbacks {29] when tle obstacles are three-dimensional:

e shortest paths do not typically traverse the vertices of the Grown
Space Obstacles,

o therc may be no paths via vertices, within the enclosing polyhedral
region [2, although other types of safe paths within R may exist.

Lozano-Pérez and Wesley {28] try to alleviate the drawback by intro-
ducing some additional vertices in the VGraph along the edges of the

1

OrliGimeai

El

,

2
1.

oy

Rl

I

OF POGR & JminY

Grown Space Obstacles. However, it is unclear how many nodes should
be added in the VGraph to get a good approxdmation to the shortest
path in 3D. The number of additional nodes will increase the mem-
ory space and the complexty of the VGraph, which will result in an
enormous increase of graph search time. Therefore, the better approx-
imation to the shortest path in 3D is nesded but without increasing
the complexity of the VGraph. The Branch and Bound Method [27]
[38] in nonlinear programming could be an alternative that does not
increase the complexity of the VGraph. However, it neesds long compu-
tational time because of its numercal approach and it gives only some
boundaries of each node for an approximation to the shortest path after
long computational time. So, the Recursive Compensation Algoriihm
is proposed in order to guarantes the convergence to the shortest path
in 3D without increasing the complexity of the VGraph and the better
approximation to the shortest path in 3D. Therefore, a new algorithm,
called the Eztended VGraph Algorithm, should deal with the drawbacks
of the VGraph Algorithm.

The Extended VGraph Algorithm has the following design
steps;

1) Apply the Orthogonal Projection Method to get the Grown Space
Obstacles m 3D. :

i) Project obstacles in 3D onto the projection spaces.

i) Build the Grown Space Obstacles in 2D.

iii) Select the necessary Grown Space Obstacles for the VGraph.
iv) Reconstruct the Grown Spacs Obstacles m 3D.

(3]

Find the visible verticss by detedng interferences.
Build the VGraph with a set of the visible vertices.

(2]

N

Search the VGraph by the graph search algorithm.

5) Apply the Recursive Compensation Algorithm to obudu iho

collision-fres shortest path in 3D.
The following results have been obtained by the Eziended VGraph Al-
gorithm;
¢ The Eztended VGraph Algorithm can deal with not only transla-

tions of a moving object but also its rotations by using the 8 sliced
projection method.

e Since the Orthogonal Prajection Method avoids building the unnec-
essary Grown Space Obstacles, it can make the VGraph simpler
than any other algorithms that use all of the Grown Space Obsta-
cles. Therefore, the Orthogonal Projection Method can save the
Mmemory spacs to store the representation of the Grown Space Ob-
stacles and it can shorten the graph search time because of the
simpler VGraph.

Ot

Or PLT

¢ The Recursive Compensation dlgorithm can guarantee the conver-

gence to the shortest path in 3D without increasing the complexity
of the VGraph. The property of convergency of the Recursive
Compensation Algorithm is proved. Since ¢ is set to 102, Lozano-
Pérez’s alleviation method needs a lot of memory space to store
(2+8 xn xe~1) vertices for the VGraph, while the Recursive Com-
pensation Algorithm needs small memory space to store (28 xn)
vertices for the VGraph. The accuracy is defined by ¢ whose value
is very small and n is the number of obstacles in workspace. Sim-
plifving the VGraph, the Rzcursive Compensation Algorithm can
save not only the memory space but also the graph search time.

o The Eziended VGraph Algorithm has been presented to solve the
drawbacks of the VGraph Algorithm.

1.2 Literature Review

The simplest obstacle avoidance algorithm uses the Generate une
Test Method (16] {28]. A simple path from Start to Goal is hypothesized
and is tested for potential collisions. If a collision is expected, a new
path is considered. This process is repeated until no collisions are
expected along the new proposed path. In the case of a manipulator,
such an algorithm can be descmibed in three steps:

1) Calculate the volume swept out by the manipulator along the pro-
posed path.

2) Determine the overlap between obstacles and the swept volume by
a manipulator.

3) Propose a new path.

The first step is self explanatory. The second step is known as an In-
terference Detection (7|, detecting the overlap between the obstacles
and the swept volume by manipulator. The whole 3 steps are known
as the Swept Volume Method [28]. Lozano-Pérez (28] and Faverjon [16]
have pointed out several difficulties and drawbacks of the Swept Volume
Method. First, it is quite difficult to model obstacles and a manipula-
tor within resonably short computational time and allowable accuracy.
Calculating the volume swept out by a manipulator with revolute joints
is 2 hard job. It can be also difficult to determine whether the swept
volume and obstacles overlap. Another fundamental drawback lies in
the relationship between the second and the third steps. Each proposed
path provides only local information about poteatial collisions, for ex-
ample, the shape of the intersections of the volumes involved, or the
identity of the obstacle giving rise to the collision. As the manipulator

2
V]

consists of several linked parts, it is difficult to find good heurstics to

modify the paths. This lack of a global view can result in an expensive

search of the space of possible paths with a very large upper bound on

the worst case length of the path. For these reasons, Udupa [59] uses a

Growing Transformation Method on obstacles to compute approxima-

tions to the forbidden regions for the three-dimensional reference point

of a three degres of freedom subset of a manipulator (28]. The system
maintains a variable resolution description of the legal positions of the
reference point. Safe paths for the subset manipulator are found by re-
cursively introducing intermediate goals into a straight line path until
the complete path is in free space. This method has two drawbacks

pointed by Lozano-Pérez (28] [30].

1) Since the complete manipulator has more than three degrees of free-
dom, the three-dimensional forbidden regions cannot model all the
constraints on the manipulator. When a trajectory fails, Udupa's
system makes a correction using manipulator dependent heunstics.
The use of heuristics tends to limit the performance of the algo-
rithm in cluttered spaces.

2) The recursive path finder uses only local information to determize
a safe path and therefore suffers from some of the same drawbacks
as the Swept Volume Method.

Lozano-Pérez [28] generalized the ideas of Udupa [59] to the whole
manipulator. His algorithm uses a more accurate growing operation to
compute the forbidden regions in both two and three-dimensions. It in-
troduces a graph searching technique for path finding, which produces
optimum two-dimensional paths when only translations are involved.
The algorithm is thea generalized to deal with three-dimensional ob-
stacles and extended to deal uniformly with more than three degrees of
freedom. However, the generalization to three-dimensions has an un-
fortunate side effect. The shortest path around a polyhedral obstacle
does mot in general traverse only vertices of the polyhedron. That is,
the shortest path in the VGraph whose node set contains only vertices
of the grown obstacles is not guarantesd to be the shortest collision-fres
path. So Lozano-Pérez (28] prooosed a method which is to introduce
additional vertices along the edges of the grown obstacles so that no
edge is longer than a prespeafied maximum length. This approach has
some drawbacks. It is difficult to dedde how many vertices should be
added along the edges of the grown obstacles and the additional vertices
need much more computational time for the VGraph search.

Brooks (8] solves the Findpath problem by good represeatation of
free space; Ahuja [4] and Faverjon (16] use an Octree for the obstacle
avoidance. Brooks [10] presents an algorithm for polyhedral obsta-
cles and a moving object with two translational and one rotational
degrees of freedom. Wong and Fu [63] present a methodology for three-
dimensional collision-fres path planning by which planning is done

4

in the three-dimensional orthogonal two-dimensional projections of a
three-dimensional environment. Peshkin and Sanderson {53] present an
algorithm that effidently finds the externally visible vertices of a poly-
gon and the range of angles. Chung and Saridis [11] present the Re-
curstve Compensation Algorithm to solve the drawback of the VGraph
Algorithm.

(41

.

2. METHODOLOGY

2.1 The Interference Detection

Boyse [7] preseats two types of interference checking: detection of in-
tersections among objects in fixed positions and detection of collisions
among objects moving along specified trajectores. The first type of
interference checking plays an important role in the Interference Detec-
tion of the Grown Space Obstacles and the second type of interference
checking plays an important role in Obstacle Avoidance. To detect a
collision between two objects, it is suffident {7] to detect a collision of
an edge on one object with a face of the other or vice-versa. Because a
face consists of its interior and a boundary, collision of a face and edge
occurs in one of two ways; the edge comes into contact either with the
interior of the face or with the boundary of the face. The two cases are
shown in Fig. 2.1.1 {7]. '

[M)

Fig. 2.1.1 Interference Detection

The collision detection algorithm (7] considers each of these two pos-
sible situations as follows:
1. Edge contacts face interior. Because edges are straight line segments
and faces are planar, contact must occur at an endpoint of the edge.
Assuming an edge moving relative to a stationary face, collision can
be detected by determining the locus of each endpoint of the moving
edge and examining these lod (space curves) to ses whether either one
intersects the face. ‘
2. Edge contacts face boundary. Again assume an edge moving rela-
tive to a stationary face and note that the locus of this moving edge
generates a surface in space. Collision is detected by examining the

6

ORICiNeL 7
OF PO 2 oy

‘l
"l

3

boundary of the face to see if it intersects the surface generated by the
moving edge.

The first type of interferencs will be detected by the Dead Node,
defined as a vertice that is located in the object, shown in Fig. 2.1.2.
To be a Dead Node, its boundary condition and its boundary equation
should be satisfied.

(i) boundary condition

Tmin < Pz < Trmes

Ymin < Py < Yma=

(1) boundary equation

fl(z)y) 'f?(z:y) 'f3(:1y) -f4(z,y) >0

The second type of interference can be detected by checking the Line
Intersection [37]. The straight forward way [57] to solve this problem is
to find the intersection point of the lines defined by the line segments,
then check whether this intersection point falls between the end points
of both of the segments. In terms of the varables in Sedgewick’s algc-
rithm [57], it is easy to check that the quantity (dz -dy; —dy -dz1) is O
if p1 is on the line, positive if p; is on one side, and negative if it is on
the other side. The same holds true for the other point, so the product
of the quantities for the two points is positive if and only if the points
falls on the same side of the line, negative if and only if the points fall
on different sides of the line, and 0 if and only if one or both points fall
on the line.

falz,y)

}‘min ______________

— et e e e - - oo —

<
3
pe]
“

Fig. 2.1.2 Dead Node

7

2.2 The Grown Space Obstacles

Most of the work in path planning will be done in the field of building
the Configuration Space Obstacles rather than searching graph. There-
fore, it is clear that the representaion of the objects [4] plays 2 major
role in determining the feasibility and performance of any intersection
or collision detection method using that representation. Udupa [58]
was the first to approach the Findpath by explidtly using transformed
obstacles and a space where the moving object is shrunked to be a
point. Udupa used only rough approxamation to the actual Configura-
tion Space Obstacles and bhad no direct method for representing con-
straints on more than three degrees of freedom (30]. Lozano-Pérez [29)
[30} shows that algorithms for computing the Groum Space Obstacles in
9D have time complexty O(v), and the algorithms for computing the
Grown Space Obstacles in 3D have time complexity O(v2logv), where v
is the total number of vertices. Considering time complexty, it is much
better to find a collision-fres path projected in 2D rather than in 3D.
Therefore, the Orthogonal Projection Method is proposed to build the
Configuration Space Obstacles in 3D, where three orthogonal cameras
are used to build the Configuration Space Obstacles. To avoid build-
ing the Grown Space Obstacles of unnecessary objects in 3D has a lot
of advantages. See the section 2.6 for these advantages. A final Con-
figuration Space Obstacles in 3D will be reconstructed from the three
Configuration Space Obstacles in 2D.

Workspace A (Fig. 2.2.1, Fig. 2.2.2 and Fig. 2.2.3) demonstrates
Udupa’'s idea to build the Grown Space Obstacles in 2D. Fig. 2.2.1
describes Workspace A with three obstacles and the initial and goal
states of a moving object. Fig. 2.2.2 describes how to build the Grown
Space Obstacles with respect to a reference point. The moving object is
applied to the boundary of each object and the reference point is traced
to obtain the Grouwn Space Obstacles. So, the moving object is shrunked
to be a point and the grown geometric objects are obtained, called
Groun Space Obstacles, that represent all the positions of the moving
object that cause collision with the obstacles. Fig. 2.2.3 describes the
final Grown Space Obstacles for Workspace A. The advantage of this
formulation (30] is that the intersection of a point relative to a set of
objects is easier to deal with than the intersection of objects among
themselves. Fig. 2.2.4 describes the data structure for Workspace A.
Representing the positions of rigid objects requires specifying all ther
degress of freedom, both transiations and rotations. The configuration
130] of a polyhedron is a set of independent parameters that characterize
the position of every point in the object. In following sections, the
different initial configuration of a moving object makes the different
Grown Space Obstacles, which result in different VGraph.

8

Fig. 2.2.1 A desctiption of W'orkspa.ce A

Fig. 2.2.2

A description of Grown Space Obstacles for Workspace A

10

At

A4

c4 c3

Fig. 2.2.3 A Grown Spacs Obstacles for Workspacse :

11

Objects (linked list)

Fig. 2.2.4 Data structure for Workspace A

- H'—i |t-l

2.3 The Rotational Grown Space Obstacles

In the previous section, it is known that the different initial configu-
ration of a moving object makes the different GSpace Obstacles (Grown
Space Obstacles), which result in different VGraphs. Since the rotation
of a moving object can change its initial configuration, each VGrapi
should be built for its rotation of the moving object. Lozano-Pérez [29]
(30] presents the @ sliced projection method to build the GSpace Obsta-
cles for the rotation of the moving object. Since the moving object can
rotate by &, the number of its VGraph ,€, can be figured out, where
0<n-§ <2xandn =1,2,---,£{. For each n, build its VGreph and
construct a set of vertices for all vertices for its VGraph. Find the wisi-
ble vertices from this set of vertices by detecting the interferences. This
set of visible vertices can build the VGraph with the sliced rotation of
a moving object.

Let’s consider Workspace B, shown in Fig. 2.3.1, having a moving
object rotated by § with respect to Workspace A. Fig. 2.3.2 describes
how to build the Grown Space Obstacles with respect to a refercuen
point. The moving object is applied to the boundary of each olijec
and the reference point is traced to obtain the rotational Grown Space
Obstacles. So, the moving object is shrunked to be a point and the
grown geometric objects are obtained, representing all the positions of
the moving object that cause collision with the obstacles. Fig. 2.3.3
describes the Grown Space Obstacles for Workspace B. Workspace A
and Workspace B have the same configuration except the initial con-
figuration of the moving object. However, they have the completely
different Grown Space Obstacles, shown in Fig. 2.2.3 and Fig. 2.3.3.
Fig. 2.3.4 describes a data structure of the rotational GSpace Obstacles.
The vertices of the rotational GSpace Obstacles, shown in Fig. 2.3.3,
can be obtained from the geometric equations, assuming that A is the
horizontal length of a moving object, v is its vertical length, § is the
radian angle between the initial configuration and the rotated config-
uration with respect to the reference point. And the lower character
means the vertices of the obstacles and the upper character means the
vertices of the GSpace Obstacles, i.e., ¢; = (aiz,a5y), A; = (Aiz) 4iy)
where 1 = 1,---,n. However, if is 0 or 7, then the set of 4 ;5 equals
to the set of A.yen. Fig. 2.3.4 shows how to design the data structure
to store the information on the rotational Grown Space Obstacles to
save the memory storage.

where 0 <6 < 7

As = (a3z,a3y) +v - (sind, —cosd)
Ag = (452, Asy) — b - (—cosf, —sinf)
A7 = (Agz, Agy) +v - (sind, —cosf)
Ag = (a4z,a4y) —h - (—cosfl, —sind).

where F <f <

T
§ — 0 ——
2
he—uv
v — h.

Lozano-Pérez points out two important properties of sliced projec-
tion: :
i) a solution to a Findspace problem in any in the slices is a solution

to the original problem, but since the slices are an approxamation

to the Grown Space Obstacles, the converse is not necessarily true;
ii) the slice projection of a Grown Space Obstacles can be computed
by using the swept volume operation, without having to compute

the high-dimensional Grown Space Obstacles.
When rotations of a moving object are allowed, the slice projection op-

eration can be used to extend the VGraph Algorithm to find safe paths
[29].

[Problem Statement 2.3] Assuming that the horizontal length of the
moving object is 2, its vertical length is 1 and @ is % and obstacles are
given as in Fig. 2.3.5, draw the rotational GSpace Obstacles.

Fig. 2.3.6 - Fig. 2.3.11 draw the rotational GSpace Obstacles. The
programming list for the simulation of the rotational GSpace Obstacles
is available in Appendix C and Appendix D.

Fig. 2.3.1 A desczption of Workspace B

Fig. 2.3.2 A description of the rotational GSpace

16

Fig.

2

2.3.2 A rotational GSpace

Object A (linked list)

l

Fig. 2.3.4 Data structure of the rotational GSpace

18

0 —S— Ay | P Ag —p| Aj —_ Ay | = _
l_ !
|]
' —
Y !
T 4| > Ay | — A3 | —> Ay
|
L- As » Ag | —> A7 | T As -
Y
2| 4 AL | T Ay | o—t A3 | — Ay
‘ X -
| 4— AL [TP Ay | — Az | +— A4 -
‘ —
3 Ay | +—» Ag | TP A7 | 4+—» 44
X -

1b.00

16.00

14.00

12.00

10.00

n a0

6.00

4.00

200

12.23 1€.20 18.22

'Y
Q
m
wul
[
1]
[5)
j &=]

Fig. 2.3.5 Workspace C for the Problem Statement 2.3

19

n a0 10.00 12.00 14.00 16.00 1b.00

6.90

4.00

2200

.30

12.33 16.33

i
o f
(&)

L0 .40

[}

Fig. 2.3.6 A rotational GSpace with 0 sliced

19.20

16.90

14.40

12.00

9.60

.20

4.00

2.40

.—_._/

N S

P[l[lﬂ

[%]

2.4 £.97 040 12.23 17.23 20,45

Fig. 2.3.7 A rotational GSpace with ¥ sliced

21

19.240

T
/

14.40

12.00

9.60

-
~
I
/
~—

4.00

2.40

6.3 10..0 12.C0 17.90 20.40

a0
1Y
a
3
a

Fig. 2.3.8 A rotational GSpace with ¥ sliced

22

16.50

14.40

12.00

9.60

.20

4.v0

2.40

19.20

.Q(] 00

«
A
1
~
A
[31]

=
a
o
m T
a
n
O

e

w

a

Fig. 2.3.9 A rotational GSpace with % sliced

19.20

1G.A0

14.40

12.00

9.G0

0

2.2

4.00

2.40

/

pﬂ.ﬂﬂ

(@]

3.40 6.29 10.<0 13.€0 17.20 20.440

Fig. 2.3.10 A rotational GSpace with 237- sliced

24

19.20

12.00

9.60

16.50

14.40

.20

4.0

2.40

e — e

S~

hoo

L3

2.<a

7.20

10.<3

14.23

17.23

Fig. 2.3.11 A rotational GSpace with é&'— siced

25

2123

2.4 The VGraph Algorithm

Consider the problem for a moving object to find the collision-free
shortest path from the Start to the Goal. It is desirable that a method
represent the Grown Space Obstacles with a graph in order to find the
shortest path from Start and Goal. The important property of this
path is that it is composed of a straight line joining the siart point and
the goal point via a possibly empty sequence of vertices of obstacles
[28]. The undirected graph (28] is denoted by VG(N,L) where N is
the union of §, G and all the obstacle’s vertices. The link set, L, is the
set of all the links (V;, NV;) such that a straight line exts connecting

the it& element of N to the j& without overlapping any obstacles. The
graph VG(N, L) is thus called the visibility graph (VGraph) of N, since
the connected vertices in the graph can see each other. The VGraph
for Workspace A is shown in Fig. 2.4.1. To build the VGraph, first
construct the Grown Space Obstacles and then detect the interference
of its vertices. If not interfered, the vertice is sent to the set of versible
vertices. The VGraph can be built by this set of the visible vertices.

The VGraph Algorithm requires that the moving object be a point
while the obstacles are the forbidden regions for the position of that
point [28]. If the moving object is not a point, a new set of obstacles
must be computed which are the forbidden regions of some reference
point on the moving object. These new obstacles must descibe the
locus of positions of this reference point which would cause a collision
with any set of the original obstacles. The method to build the Grown
Space Obstacles was described in the previous section. This VGraph
Algorithm could be applied to find the collision-free shortest path in
2D.

The VGraph Algorithm

1. Build the Grown Space Obstacles.

2. Find the visible vertices of the Grown Spaces Obstacles.
3. Build the VGraph with the visible vertices.

4. Search the VGraph by the graph search algorithm.

It is known that the different initial configuration of a moving ob-
ject makes the different GSpace Obstacles, which result in the different
VGraph. Since the rotation of 2 moving object can change its initial
configuration, each VGraph should be built for its rotation of the mov-
ing object. Consider the § sliced rotation of the moving object. Since
the moving object can rotate by &, the number of its VGraph €, can
be figured out, where 0 < 5.6 <27 andn =1,2,---,§. For each 7,

26

build its VGraph and construct a set of vertices for all vertices for its
VGraph. Find the visible vertices from this set of vertices by detecling
the interferences. This set of visible vertices can build the VGraph with
the sliced rotation of 2 moving object. The algorithm is the following:

Procedure BuildVGraph(var VGraph, List)
Comments
o - List is a linked list for the set of visible vertices.

e VGraph is (n xn) array to store the cost between two visible verticas
and oo means that two vertices are invisible.

Begin
From « List
To + List
VGraph ~— oo
while From # nil do {
if not DeadNode(List,From T .Node)
then {
To + List
while To # nil do {
if (From = To) or
DeadNode(List,From T .Node) or
DeadNode(List,To T .Node) or
Interference(List,From T .Node,To7 .Node)
then { do nothing. } '
else VGraph ~ cost between two visible
vertices
To ~— Tof .Next } }
From « From7 .Next }
End

The shortest path from the start to the goal in this VGraph is the
~ shortest path among the obstacles in 2D. However, the path in 3D by
the VGraph [28] [29] whose node set contains only vertices of the Groun
Space Obstacles is not guaranteed to be the shortest collision fres path,
because the shortest path may involve going through points on the edges
of the Grown Space Obstacles in 3D. Lozano-Pérez and Wesley [28] try
to alleviate the drawback by introducng some additional vertices in the
VGraph along the edges of the Grown Space Obstacles. However, it is
unclear how many nodes should be added in the VGraph to get a good
approximation to the shortest path in 3D. The number of additional
nodes will increase the memory and the complexdty of the VGraph,

27

which will result in an enormous increase of graph search time. There-
fore, the better approximation to the shortest path in 3D is needed
but without increasing the complexty of the VGraph. The Branch and
Bound Method [27] (38] in nonlinear programming could be an alterna-
tive that does not increase the complexty of the VGraph. However, it
needs long computational time because of its numerical approach and
it gives only some boundaries of each node for an approximation to the
shortest path after long computational time. Therefore, the Recursive
Compensation Algorithm in section 2.7 is proposed in order to guaran-
tee the convergence to the shortest path in 3D without increasing the
complexity of the VGraph and the better approximation to the shortest
path in 3D.

[Problem Statement 2.4] Consider the problem, shown in Fig. 2.2.1,
assurning that the objects are polyhedrons and their visual informations
are available and they are represented by vertices. Find the collision-
free shortest distance from Start to Goal with I sliced rotation.

The programming list of this simulation is available in the Appendix
A. The following result for the Problem Statement 2.4 comes from the
file [PATH] in Appendix B.

Table 2.4.1 Simulation result of the VGraph algorithm.

The shortest path is calculated by the VGraph Algonithm.
Start Node = 1, Goal Node = 27,
Path represented by internal nodes: 1 — 16 — 6§ — 27

From To Cost Rotation
Start in 0 sliced Az in % sliced 4.125 3
Ajin 7 sliced B in 7 sliced 5.025 0
By in 7 sliced Goal in 0 sliced 4.031 -3

The total cost between Start and Goal = 13.179

Fig. 2.4.2 shows the collision-free shortest path with I sliced rota-
tion by the VGraph Algorithm. The path with I sliced rotation has
13.179 Euclidean distance, while the path without sliced rotation has
25.452 Euclidean distance. The path segment with sliced rotation is
described in the Table 2.4.1, the path segment without sliced rotation
is {Start — C; — B3 — By — Goal}. Hence, the sliced rotation of
the moving object can shorten the Euclidean distance. However, there
is a trade off between accuracy and speed. I the small sliced rotation
is considered, then the better approximation to the shortest path can
be obtained, but more memory space to store each VGraph is needed.

28

Fig. 2.4.1 A VGraph for Workspace A

Fig. 2.4.2 The collision-fres shortest path for Workspace A

30

2.5 The Graph Search Algorithm

There are a number of control strategies for finding a path through
a graph. The fundamental control problem is to select an appropriate
database and the applicable rules to apply in the search for 2 satisfac-
tory path. The path finding problem has usually besn approached in
one of two ways (22|, the Mathematical Approach and the Heuristic Ap-
proach. The Mathematical Approach deals with properties of abstract
graphs and with algorithms that follow an orderly examination of the -
nodes of a graph to find the minimum cost path. The Heuristic Ap-
proach, on the other hand, typically uses special knowledge about the
problem. The effidency with which a path is found increases as the
knowledge becomes closer to being complete. An important point to
note is that the Heuristic Approach generally is not able to guarantee
that the minimum cost path will be found.

General Graph Search Algorithm [61]

1. Put the START node on OPEN.

2. If OPEN is empty, exdt with failure.

3. Select a node n from OPEN and put it on CLOSE.

4. Expand n and put some of its successors in OPEN with a pointer
back to n. If any of these successors is a GOAL node, exit with the
solution by tracng back its pointers.

5. Go to step 2.

Pearl [52] describes the main features of the different graph search
algorithms as Hidl-climbing, Depth-first, Backtracking, Backmarking,
Breadth-first, Uniform-cost and Best-first. While sharing this common
framework, the algorithms differ at least in one of the following points: -
¢ The number of successors generated
¢ The node from OPEN selected for expansion

o The particular ' management sirategies used for cleaning up

CLOSED

The following remarks (52] should be considered to select a search al-
gorithm for path planning purpose. First, optimality is a concept which
seems to be opposed to time and storage effidency. The only algorithm
in which these concepts are somehow compatible is the A * Algorithm,
as long as a good enough heuristic evaluation function is used. Second,
the algorithms in which the goodness of the solution can be established
are the breath-first and the uniform-cost ones. In most cases this has
2 high computational cost. Third, to reduce the time and storage re-

31

quirements of the search algorithms, it is necessary to make them use
information which is bevond the pure graph structure. Hill-climbing,
backmarking and best-first are the search algorithms which can incorpo-
rate information about the particular domain. There are, so, three facts
which strongly recommend best-first algorithms as the most appropn-
ate ones for path planning purposes: their adequacy for incorporating
information belonging to the particular domain being dealt with, ther
capability of converging to either optimal or non-optimal solutions and
their time and storage efficiency. These are the main reasons [61] that
led us to select best-first algorithms as the most appropriate for path
planning. The A* Algorithm is probably the most widely used best-
first graph search procedure. The reason for its success [61] Les in its
simplicity, its generality, the optimality of 1its solutions, and the fact
that if its A function is admissible (that is, it never overestimates the
cost of a subpath), the A* Algorithm is optimal [47]. For example, the
criterion used in the VGraph can taken into account the distance to he
travelled in the Configuration Space but also the costs assigned to the
change of speed [(16].

The total estimate f(n) is an estimate of the cost of a minimal cost,
path from s to g node constrained to go through node n, and can Dbe
expressed as ?(n) =g(n)+ E(n), where g(n) is an estimate of the cost
g(n) of a minimcal cost path from s to n and h(n) is an estimate of
the cost A(n) of a minimal cost path from n to a goal node. g(n) is

constructed step by step by the algorithm, whereas A(n) is obtained
from the heuristic information.

A* Algorithm [41]

1. Put the start node s on a list called OPEN. Set g(s) — 0 and
f(s) —h(s). |

If OPEN is empty exit with failure; othewise continue.

Remove from OPEN that node n whose ? value is smallest and

put it on a list called CLOSED. (Resolve ties for minimal f values
arbitrarly, but always in favor of any goal node.)

[

4. If nis a goal node, exdt with the solution path obtained by tradng
back through the pointers; otherwise continue.

5. Expand node n, generating all of its successors. (If there are no -
successors, go to Step 2.) For each successor n;, compute g; «—
§(n) = c(mm3).

6. If a successor n; is not already on either OPEN or CLOSED, set

g(n;) — gi and ?(ni) —g;+ l:(n.,-). Put n; on OPEN and direct 2

pointer from it back to n.

If a successor n; is already on OPEN or CLOSED and if g(n:) > gi,

then update it by setting g(n;) — g; and ?(n.;)_— g; + E(ni). Put

=3

32

n; on OPEN if it was on CLOSED and redirect to n the pointer
from n;. :

8. Go to Step 2.

It is possible to prove [47] that if, for every node n, E(n) is a lower
bound on the cost A(n) of a minimal cost path from node n to a goal
node, then the 4 * Algorithm, is admassible, i.e. it always finds an opti-
mal path. Moreover, it is possible to simplify the 4 * Algorithm by mak-
ing a further assumption on the estimate h : for any two nodes m and
n which are connected by an arc(m,n) we have E(m) —k(n) < ¢(m,n).
This assumption is called the consistency assumption and its meaning
1s that, by moving from a node to any successor, we must always have
a better estimate. Therefore the A* Algorithm with the comsistency
assumption expands fewer than N nodes and, hence, it runs in O(N)
steps [41)].

Theorem 2.4.1 [41] For all N there exists a search graph G y of size N,
with positive costs and estimates which are lower bounds (A(n) < i(n)
for each n), on which the 4 * Algorithm runs for O(QN) steps.

Martelli [41] presents the B Algorithm to modify the A* Algoritlun
in order to improve its behaviour with nonconsistent estimate. 'The
B Algorithm is thus a simple variant of the A* Algorithm and can be
obtained from it by substituting steps (1) and (3) with the following
steps:

1’. Put the start node s on a list called OPEN. Set §{s) — 0, f(s) —
his), F — 0.

3/. If there are some nodes in OPEN with f < F, select among them
the node n whoseﬂ_’q‘ value is smallest; otherwise, select the node n
in OPEN whose f value is smallest and set F .« f(n). (Resolve
ties arbitramly, but always in favor of any goal node.) Remove n
from OPEN and put it on a list called CLOSED.

Theorem 2.4.2 [41] Given any search graph G of size it N, with pos-
itive costs and estimates which are lower bounds on the minimal cost
(h(n) < h(n) for each n), thea the B Algorithm runs on it for at most
O(N?) steps.

Theorem 2.4.3 [41] Let G be any search graph with positive costs and

-~

estimates which are lower bounds on the minimal cost (h(n) < k(n) for
eah node n). Then, if the A* Algorithm and the B Algorithm resolve
ties in the same way, the B Algorithm does not expand more nodes than
the A * Algormithm.

33

Theorem 2.4.3 assures us that the B Algorithm can always be used
in place of the A* Algorithm without having any loss in efficency. In
particular, when searching trees or graphs with a consistent estimate,
both algorithms will have the same behaviour, but, with a nonconsistent
estimate, the B Algorithm will, in general, have a much better behaviour
than the A* Algorithm.

34

2.6 The Orthogonal Projection Method

Most of the work in path planning will be done in the field of building
the Configuration Space Obstacles rather than searching graph. There-
fore, it is clear that the representaion of the objects (4] plays a major
role in determining the feasibility and performance of any intersection
or collision detection method using that representation. Lozano-Pérez
[29] [30] shows that algorithms for computing the Grown Space Obsta-
cles in 2D have time complexty O(v), and the algonthms for comput-
ing the Grown Space Obstacles in 3D have time complexity O(v2 log v),
where v is the total number of vertices. Considering time compic:aiy, it
1s much better to find a collision-free path projected in 2D rather than
in 3D.

Some classes [3] [63] of thres-dimensional objects, which are of rigid

solids of uniform thickness, can be described by the line drawings of
three orthogonal projections onto the two-dimensional planes. Ior thesc
classes of objects, the three-dimensional model can be reconstrucied
from the three-dimensional objects. However, for other classe: of thice-
dimensional objects {63], the exact reconstruction from line drawings of
three orthogonal projections cannot be performed. However, a maxamal
volume that encloses the volume of the object could be reconstructed.
If a three-dimensional point does not collide with the maximal volume,
it would not collide with the true object. This leads to a suffident con-
dition [63] for collision checking, as stated in the following Lemmas.
Lemma 2.6.1 [63]: If the projection of a three-dimensicnal point
1s outside the area of the two-dimensional projection of a liice-
dimensional object in one or more of the three orthogonal subspaces,
the three-dimensional point is guaranteed to be outside the volume of
the three-dimensional object in the three-dimensional space.
Lemma 2.6.2 [63]: If the projection of some three-dimensional path
for the reference point of a three-dimensional moving object is collision
free in one or more of the orthogonal projected spaces, then the three-
dimensional moving object is collision-free along the three-dimensional
path in the three-dimensional space.

Since the unnecessary obstacles, for the Findpath problem in 3D,
can be avoided by Lemma 2.6.1 and Lemma 2.6.1, the Orthogonal! Pro-
jection Method can simplify the VGraph. So, the Orthogonal Projection
Method has some advantages. It can shorten the graph search time as
well as it can save the memory space to store the Grown Space Ob-
stacles and VGraph. And advantage is related with its representation.
The Grown Space Obstacles in 3D can be represented and built by.
three Grown Space Obstacles in 2D. Three processors are assigned for
this job and they work so simultaneously that the paralle! processing

335

can be expected. Therefore, the Orthogonal Projection Method can save
more time in building the Grown Space Obstacles than any other algo-
rithms that work sequentially. The Orthogonal Projection Method has
the following steps in turn:

1. Project Objects in 3D onto the projection spaces.

2. Build the Grown Space Obstacles in 2D.

3. Select the necessary Grown Space Obstacles by Lemma 2.6.2.
4. Reconstruct the Grown Space Obstacles in 3D. '

However, the path in 3D by the VGraph Algorithm (28] [29] whose
node set contains only vertices of the Grown Space QObstacles 1is not
guaranteed to be the shortest collision free path, because the short-
est path may involve going through points on the edges of the Groun
Space Obstacles in 3D. Lozano-Pérez and Wesley [28] try to alleviate
the drawback by introdudng some additional vertices in the V(Grapl
along the edges of the Grown Space Obstacles. However, it is unclear
how many nodes should be added in the VGraph to get a good approxi-
mation to the shortest path in 3D. The number of additional nodes will
increase the memory space and the complexity of the VGraph, which
will result in an enormous increase of graph search time. Therefore, the
better approximation to the shortest path in 3D is needed but with-
out increasing the complexty of the VGraph. The Branch and Bound
Method {27] [38] in nonlinear programming could be an alternative that
does not increase the complexty of the VGraph. However, it needs long
computational time because of its numerical approach and it gives only
some boundaries of each node for an approximation to the shortest path
after long computational time. Therefore, the Recursive Compensaiion
Algorithm is proposed in order to guarantes the convergence to the
shortest path in 3D without increasing the complexity of the VGraph
and the better approximation to the shortest path in 3D.

[Problem Statement 2.6] Build the Grown Space Obstacles in 3D by
using the Orthogonal Projection Method, assuming that the object in
3D is a polyhedron, shown in Fig. 2.6.1. The object has the follow-
mg vertices; Pl(zl:ylyzlL PZ(zlry'..’le)a P3(22,y2121), Pé(zz;ybzl),
P3(z1,y1,22), Ps(z1,¥2,22), Pr(z2,¥2 22), Ps(za,y1,22), where z =
T,y1=35,z1 = 3,z2 = 14,y0 = 10,29 = 12.

Fig. 2.6.2 desczibes three Orthogonal Projections of Workspace D.
Fig. 2.6.3 describes the Grown Space Obstacles in 2D. Fig. 2.6.4 de-
scribes the reconstruction of the Grown Space Obstacles in 3D. Fig.
2.6.5 describes the Grown Space Obstacles of Workspace D.

36

@ a moving object

Fig. 2.6.1 A description of Workspace D -

SN e

o 1
B R s fad bl o

| | 1 i
[V PRI ST G It B
R U R NP S R
1 { |

- - . e e e e W e oee S

|
———r---

-] =) -

|
e Rl A
1
}
1
)

Fig. 2.6.2 A description of three Orthogonal Projections
38

Fig. 2.68.3 A description of Grown Space Obstacles in 2D

39

Fig: 2.6.4 A reconstruction of Grown Space Obstacles in 3D

40

Fig. 2.6.3 The Grown Spacs Obstacles of-W'orkspace D

41

2.7 The Recursive Compensation Algorithm

The shortest path from the start to the goal in this VGraph Algo-
rithm is the shortest path among the obstacles in 2D. However, the
path in 3D by the VGraph Algorithm [28] [29] whose node set contains
only vertices of the Grown Space Obstacles is not guaranteed to be
the shortest collision free path, because the shortest path may involve
going through points on the edges of the Grown Space Obstacles in 3D.
Lozano-Pérez and Wesley (28] try to alleviate the drawback by intre-
dudng some additional vertices in the VGraph along the edges of the
Grown Space Obstacles. However, it is unclear how many nodes should
be added in the VGraph to get a good approxamation to the shortest
path in 3D. The number of additional nodes will increase the mem-
ory space and the complexty of the VGraph, which will result in an
enormous increase of graph search time. Therefore, the better approx-
mation to the shortest path in 3D is needed but without increasing the
complexity of the VGraph. The Branch and Bound Method [27] [38] in
nonlinear programming could be an alternative that does not increase
the complexity of the VGraph. However, it needs long computational
time because of its numerical approach and it gives only some bound-
aries of each node for an approximation to the shortest path after long
computational time. Therefore, the Recursive Compensation Algorithm
is proposed in order to guarantee the convergence to the shortest path
in 3D without increasing the complexity of the VGraph and the better
approximation to the shortest path in 3D.

Fig. 2.7.1 descoibes the path calculated by the VGrapa Algorsith -
3D. The shortest path in 3D may involve going through points on .he
edges of the Grown Space Obstacles. Therefore, the path by VCrapr
Algorithm is not guaranteed to be the shortest path, since the »al’
by the VGraph Algorithm involves going through points only on
vertices of the Grown Space Obstacles. Fig. 2.7.2 describes the s
compensation for the intermediate nodes. Since we assume that all the
obstacles are polyhedrals, we are interested in the z;{(k), 7 = 1,2 and
k =0,1,2---. The subscript : indicates the intermediate node and &
indicates the number of recursive compensation. This problem is re-
lated with minimizing the Euclidean distance between two nodes in 3D
within some constraints. Fig. 2.7.2 describes the second compensation
for the intermediate nodes and Fig. 2.7.3 describes the third compen-
sation for them. Fig. 2.7.4 describes the final path in the Recursive
Compensation Algorithm, i.e., the better approxamation to the shortest

path in 3D.

G g PR TR <3
ORfANEL RTINS

OF POCTT QUALITY

RCA (Recursive Compensation Algorithm)

Procedure RCA(NodeSet, ¢)
Comments

NodeSet = {S} U {N,Ng,-+-,Npn_1} U {G} searched by VGraph
where 5(=0! ¥0, ZO), Nl(zli ¥i :l)y N2(321 ¥2, zg): T G(zm Yn, zﬂ.)
The NodeSet is represented by the linked list.

€ = a perrussible error

Function Distance will calculate the Fuclidean distance e
NodeSet.

Procedure Compensate will find the compensated nodes and will
return the set of these nodes.

Begin

End

D = Distance{(NodeSet)
Compensate(NodeSet)
Dy = Distance(NodeSet)
If lDl —Dy|< ¢
Then Return(NodeSet)
Else RCA(NodeSet, ¢)

Function Distance{NodeSet)

Comments

NodeSet = {S} U {N|,No,---,Na1} U {G} search. ~
where S(:OI Y0, ZO): ‘Nl(zlryly 21), N2(32: Y2 32)7 RN
The NodeSet is represented by the linked list.

of NodeSet for Distance > 2

Function ED will find the Fuclidean distance between the first node
and the second node in NodeSet.

Begin

If # of NodeSet = 2
Then Distance = ED(NodeSet)
Else Distance = ED(NodeSet)
+ Distance(NodeSet - {FirstNode })

End

Procedure Compensate{NodeSet)

Comments

e NodeSet = {S}U {Ny,Ng,---,No_1} U {G} searched by VGraph
where S(zg,v0,20), N1(z1,¥1,71), Na(z2,92,22), -++, G(Tn, ¥n, 2n)
The NodeSet is represented by the linked list.

o # of NodeSet for Compensate > 3

e Procedure Reset will take the first 3 nodes in NodeSet and replace
the second node of the 3 nodes in NodeSet in order to get the set
of compensated nodes.

Begin
of NodeSet = 3
Then Reset(NodeSet)
Else Reset(NodeSet) U Compensate(NodeSet - {FirstNode })
End

Procedure Reset(NodeSet)

Comments

o NodeSet = {S} U {N1,Ng, -+, Nn_1} U {G} searched by VGraph
where S(z0, 70, 20) N1(z1,¥1,21), No(z2,92,22), -+, G(Zn,¥ns 2n)
The NodeSet is represented by the linked list.

e # of NodeSet for Reset > 3

e D(d) is the Euciidean distance function via 3 nodes in 3D.

8D (d)

ad

e Refer to Appeadix C [11] to calculate d to satisiy = 0.

Begin
Take out the first 3 nodes in NodeSet.

Calculate d to satisfy agf{d) = 0.

If d is on the visible edge,
Then replace the second in NodeSet with the compensated.

End.

[Problem Statement 2.7] Suppose the following vertices are calculated
by the VGraph Algorithm; 5(3,2,4), N1(7, 4, 10), N»(8,8,9), G(4,11,2)
shown in Fig. 2.7.1. Calculate the shortest path from the S node to
the G node, assuming that the obstacles are polyvhedrals.

Define the convergencs ratio (A;)

y, = yilk) -yi(k=1)
P oyi(k = 1) —yi(k)

44

where ¢ for intermediate node, & for recursion. Then the RCH have the
fast convergence ratio from the Theorem 2.7.3. When ¢ is set to 1072,
the Branch and Bound Method needs 2301666 miliseconds, however,
the RCA needs only 416 miliseconds on VAX-11/730. The Fuclidean
distance obtained by the RCA is 48% less than that obtained by the
VGraph Algorithm. The RCA is 53,000 times faster than the Branch
and Bound Method within the same ¢ from the Table 2.7.1. Fig. 2.7.3
describes how fast the RCA works. It is proved that the sequences
generated by the RCA are Cauchy segquences by the Theorem 2.7.4.
Therefore, the number of recursive compensation could be calculated if
€ is known. Or ¢ could be calculated if the number of recursive compen-
sation is given. Let's compare the Lozano-Pérez’s alleviation method
and the Recursive Compensation Algorithm to get the same accuracy,
€, for the Problem Statement 2.7. Since ¢ is set to 107, Lozano-Pérez’s
alleviation method needs a lot of memory space to store (2+2 x 8 x 10%)
vertices for the VGraph, while the Recursive Compensation A4lonorithr
needs small memory space to store (2 + 2 x 8) vertices for the VGrapi..
Simplifying the VGraph, the Recursive Compensation Algorithm cou
save not only the memory space but also the graph search time.

Table. 2.7.1 Euclidean distance and Computing time
Algonithm Distance |Computing time
VGraoh 20.3283 0
Branch and Bound 13.7416 2.301.666
RCA 13.7416 418

The simulation of the RCA has been done in 3D. Ses the Pivils
Statement 2.7 and the simulation result in 3D. The convergencs
RC4 is proved in 2D for simplicity. We are interested in the convergence

of the compensated nodes by the RCA, ie, {y:1(k)}, {y=(3)).

yalk = 1) -y
——(z1 —=9)
Ty — 2y

yo + Do{yalk - 1) —yo}
Agyalk — 1) = (1 — Aglyo

yi(k) =yo +

z{ —z)

Ag= =2 ,0< Ayl
T2 — g
Cy3 —yi(k)
ya(k) = y1(k) - =——=(z2 — =1)
:2:3 -2:1
=yi(k) = Di{ys ~y1(k)}
= (1 = Ayyi(k) — Ayys.
A =2 g0 <

4

(@]

Definition 2.7.1 [6] [54] Let {zn} be a sequence of extended real’
numbers; we define the limit superior of {zn} to be the extended real
number

Lmsup zn = inf supz;
| P T
and the limit inferior of {zn} to be the extended real number
iminfz, = sup inf z;.
n>1j2n

Proposition 2.7.1 [6] [54] Let {zn} be a sequence of extended real
numbers and set

= inf ::j
j2n
and

S, = Supzj.
i2n

Then for each n the following hold:

. - -~
n. s, S84
m ‘sn.—.-l an’

iv. liminf zn < lmsup zn.
Proof. Conclusions (i)-(iii) are obvious from the definitions, wuu wo we
prove ogly (iv). Define

s~ =sups,(=liminf zp)

and
3™ =inf s (= limsup z,).

Fix an integer n; observe that if 1 <k < n, then by (iii)

s; $sp Ssp.

On the other hand, if £ > n, then we may apply (i1) to obtain

46

?,‘
a |
ClY

and thus s is an upper bound for {s;} This implies that s > s~
but n was arbitrary, and thus s~ is a lower bound for {57}, showing
that s~ < 87, as desired.

Theorem 2.7.1 [6] [54] Let {zn} be a sequence of extended real num-
bers and suppose that limzp = 2. If |ze] < oo, then for each : > 0
there is an integer N such that jz; —zf < ¢ wheneve' j > N.

Proof. Define {s;} and {s7} as in Proposition 2.7.1 and @ : > I
Since sup{s;} = T = inf{s; }, we may choose N| and N3 so large
that

o —€=Z 5;;1

and

Setting

N = max{N, Ny},

it follows from Proposition 2.7.1 (i) and (iii) that for 7 > V,

v S35 Ssy Sz g

T —€ <
oo E_S‘V

from which iz; ~ 20| <eilj 2 N.

Definition 2.7.2 {6] {54] Let {...n,} be a sequence of real 2w
suppose, for each ¢ > 0, there is an index N such that Iz

whenever j, k > N. Then the sequence {zn} is said to be a Cauchy
sequence.

Theorem 2.7.2 [6] [54] For a sequence {zn} of real numbers, the
following are equivalent;

1. {zn}is a Cauchy sequence;

ii. {zn} converges to some real number z .
Proof. We first show that (i) — (ii). By Proposition 2.7.1 (iv), it
suffices to argue that bmsup zn < lminfzh. Fix € > 0 and choose

N so large that if j,k > N, then z; —z;) < e. Then in particular,
i,k 2 N, it follows that z; < T + ¢ and hencs

47

inf sup < sup z; S zp + <.
n>l. ;
Ztj2n j2N

Now recall that & > N was arbitrary, and hencs

limsupz, < sup inf z; +¢ = liminfz, + &
n?_Nkzﬂ

Since ¢ was arbitrary, this shows that (i) — (i). For the converse,
fix ¢ > 0 and applying Theorem 2.7.1, select an integer N so that
lz; —zoc) £€/2ifj 2 N. Then j,k 2V,

lz; =2kl Slz; ~Zxol T 2o — Tkl Se
Theorem 2.7.3 The sequences generated hy R4 are.smono. deczess

Proof. The nt® compensated node y1(k) can be described by

yi(k) = Ao(l = Apyi(k — 1) + (1 — 2oJyo + Dol1y3
Take (n — 1) compensated node y1(k + 1),
yi(k +1) = Ao(1 = A)y1(k) + (1 — AoJyo + AoA1y3
Subtract one from the other, then
yi(k) —yilk = 1) = 2o(1 = A){y1(k — 1) —y:(k)}

y1(k) —yi(k +1) _ _
yilk = 1) —y1(k) Soll =)
Since |Ag(1 — A1)l < 1,
yi(k) —yi(k - 1)]
yi(k = 1) =1k} |

Therefore, {y1(k)} is mono decreasing.
The nt2 compensated node yp(k) can be described by

<1

ya(k) = Do(1 — Apya(k — 1) + (1 = 29)(1 = Ay)yp + A1yg
Take (n + l)Eﬁ compensated node yg(k + 1),

yalk +1)-= 8g(1 = Aylya(k) — (1 = 29)(1 — AiJyo — D1yg
Subtract one from the other, then

yalk) —yalk +1) = Ag(1 = A {ya(k — 1) = ya(k)}

48 . PO . oy
COImORNSL PR 48

UF BGOR GUALITY

Therefore, {y2(k)} is mono decreasing.

QED.

Theorem 2.7.4 The sequences generated by RCA are Cauchy se-
quences.

Proof. This theorem can be proved by the mathematical induction.
By the Theorem 2.7.3, we can get

y1(2)

—_— <1

y1(1)
Substitute y1(2) = Ag(1 ~ Ap)y1(1) + Aol1y3 + (1 — Aglyo

Ao{l —Ay)y(1l) + AgAy3 + (1 - Aglyg
y1(1)

{1 =21 —ADWi(1) > (1 - Aglyg = ApAyy3

(i) Since 1 — Ap(l — A;) > 0, we can g=t the following inarm- ¥

<1

1 —2Ay ‘ AV, VAN i
1291 -an0 IT=Ay1-AaY?

yi(l) >

(i) Assume that

1-49 AgAl
L= A(1-A) T T a1 -ap”®

yi{k) >

(i1) We should prove that

1 -4y , Agd,
=081 -2 T T80 -ap”

yi(k=1) >

1 ™ Y4

If the above inquality is hold for any &, the sequence genazaicd L, 270!
is 2 Cauchy seguence because the sequence by RCA is mono decreasing
by the Theorem 2.7.3.

yilk = 1) = 2g(1 = A)yi(k) = (1 = Aglyg + Mgl 1y3

ok 19

ey

vy

Substitute yi(k) with the inequality from (i), then

DAY AV AN
E-1)> A1 -A -
+(1 = Ao)yo + Bol1yg
Therefore,
1 -4, AVTASY
E+1)> -
yl() 1 — Ao(l - Al)yo 1 — Ao(l - A]_)y:;

By the Theorem 2.7.3, we can get
‘)
yzg—) <1
ya(l)
Substitute ya(k) = Ag(l — Ap)ya(k —1) =+ (1 — 20)(1 — Ar)yo + B1y3
Ag(l = Apya(k = 1) = (1 —Ag)1 — Aylyo + B1y3 _
y1(1)
{1 - 201 —ADkya(l) > (1 - Ag)(1 = Arlyo + B1ys
(iv) Since 1 — Ag(l — A1) > 0, we can get the following inequality.
(1= Ag)(1 — &) Ay
1 Y0 +
vl)> T AT Ay 0T To A - Ay
(v) Assume that

)?!3

(1 —A2g)(1 —-24y) Ag
k) > =Yg —
va(k) > 7 A=A T TS A S L
(vi) We should prove that
(1 =21 —A4ay) Al
(k=1)> —yp = -
y2) 1 — Ayl —Ay) vo 1 =21 =24}

If the above inquality is hold for any k, the sequence generated oy RUA
is a Cauchy sequence because the sequeace by RCA is mono decraiiing
by the Theorem 2.7.3.
ya(k) = Ag(1 — Aplya(k = 1) = (1 = Ag)(1 = Ar)yo + Duys

Substitute yo(k) with the inequality from (v}, then
(1=28)(1—-A1) Ay
T=Ag(l—Ay) 07 T=ag(l - ay)
+(1 = 20)(1 — Ar)yo ~ Awy3

ya(k +1) > 2q(1 — 21){

Therelore,
(1 =29)(1 -2y) A,
k+1)> —=y0 + -
vak = 1) > TR T Ay 0T To AL - 4,
Therefore, the sequences generated by RCA are Cauchy sequences by

the Theorem 2.7.2 and Theorem 2.7.3, because {y;} and {y2} converge
to some real numbers and they are mono decreasing.

)y3

QED.
30

11

10

Fig. 2.7.1 The path calculated by the VGraph Algorithm

e e . A e e S W A @ — -

10 11

8

- e e o e et fan v e — Gee e] e -

Fig. 2.7.2 The first compensation by the RCA

o™
n

Fig. 2.7.3 The second compensation by the RCA

«d
Llp]

Fig. 2.7.4 The final path by the RCA

Euclidean Distance

12 Y T T T 1" T T T T T T 1
0 2 4 6 8

of Recursion

Fig. 2.7.5 The Euclidean distance by the RCA

10

3. Problem Statement, Preliminary Results and Proposed Work

3.1 Problem Statement

Consider the VGraph Algorithm for a moving object to find the
collision-fres shortest path in a workspace with some obstacles. A lot
of work has besn done in this field, which has the following design steps;
e Build the Grown Spacz Obstacles.

o Find the visible vertices by detecting interferences.
o Build the VGraph with a set of the visible vertices.
e Search the VGraph by the graph search algorithm.

The shortest path from the start to the goal in this VGraph Algo-
rithm is the shortest path among the obstacles in 2D. However, the
path in 3D by the VGraph Algorithm {28 [29] whose node set contains
only vertices of the Grown Space Obstacles is not guarantesd to be
the shortest collision free path, because the shortest path may involve
going through points on the edges of the Grown Space Obstacles in 3D.
Lozano-Pérez [29] points out the drawbacks of the VGraph Algorithm.
The first drawback is related with the rotation of a moving object.
Since the VGraph Algorithm require moving a object along obstacle
boundaries, shortest paths are very susceptible to inaccuraces in the
object models. This drawback can be solved by using the sliced projec-
tion method ‘28] (291 [30]. Howevez, the VGraph Algorithm has serious
drawbacks {29] when the obstacles are three-dimensional:

e shortest paths do not typicaily traverse the vertices of the Grown
Space Obstacles,

e thers may be no paths via vertices, within the enclosing polyhedral

Lozano-Pérez and Wesley [28] try to alleviate the drawback by intro-
ducing some additional vertices in the VGraph along the edges of the
Grown Space Obstacles. However, it is unclear how many nodes should
be added in the VGraph to get a good approximation to the shortest
path in 3D. The number of additional nodes will increase the mem-
ory space and the complexty of the VGraph, which will result i ==
enormous increase of graph search time. Therefore, the better approx-
imation ta the shortest path in 3D is needed but without increasing
the compledty of the VGraph. The Branch end Bound Method [27]
[38] in nonlinear programming could be an alternative that does not
increase the complexity of the VGraph. However, it needs long compu-

36

tational time because of its numerical approach and it gives only some
boundares of each node for an approxmation to the shortest path after
long computational time. So, the Recursive Compensation Algorithm
is proposed in order to guarantee the convergence to the shortest path
in 3D without increasing the complexty of the VGraph and the betier
approximation to the shortest path in 3D. Therefore, a new algorithm,
called the Eztended VGraph Algorithm, should deal with the drawbacks
of the VGraph Algorithm.

The Extended VGraph Algorithm has the following design
steps;

1) Apply the Orthogonal Projection Method to get the Grouwn
Obstacles 1n 3D.

i) Project obstacles in 3D onto the projection spaces.

i) Build the Grown Space Obstacles in 2D.

iii) Select the necessary Grown Space Obstacles for the VGraph.
iv) Reconmstruct the Grown Space Obstacles in 3D.

Find the visible vertices by detedng interferences.

Build the VGraph with a set of the visible verticas.

Search the VGraph by the graph search algorithm.

Apply the Recursive Compensation Algorithm to obtain the
collision-free shortest path in 3D.

]

W W

[91]

3.2 Preliminary Results

e The VGraph Algorithm has been implemented to find the collision-
free shortest path in two dimensional space. This VGraph Algo-
rithm can deal with not only translations of a moving object but
also its rotations by using the 4 sliced projection. For the cii- .

tion of the VGraph Algrothm, see the Problem Statement 3.2.1 anu

the Problem Statement 3.2.2.

e The Orthogonal Projection Method has been implemented to build
the Grown Space Obstacles in 3D and to represent them in three
projected two-dimeasional spaces. Since the Orthogonal Projection
Method avoids building the unnecessary Grown Space Chsi. [~
it can make the VGraph simpler than any other algorithms that
use all of the Grown Space Obstacles. Therefore, the Orthogonal
Projection Method can save the memory space to store the represen-
tation of the Grown Space Obstacles and it can shortea the graph
search time because of the simpler VGraph. For the simulation

7

3

of the Orthogonal Projection Method, see the Problem Statement
3.2.3.

o The Recursive Compensation Algorithm has been implemented to
find the collision-free shortest path in 3D. The Recursive Com-
pensation Algorithm can guarantee the convergence to the short-
est path in 3D without increasing the complexty of the VGrapa.
The property of convergency of the Recursive Compensation Al-
gorithm is proved by the Theorem 2.7.4. Since € is set to 10‘5,
Lozano-Pérez’s alleviation method needs a lot of memory space to
store (2 =8 x n x 1) vertices for the VGraph, while the Recur-
sive Compensation Algorithm needs small memory space to store
(2 + 8 x n) vertices for the VGraph. The accuracy is defined by
¢ whose value is very small and n is the number of obstacles in
workspace. Simplifying the VGraph, the Recursive Compensation
Algorithm can save. not only the memory space but also the graph
search time. For the simulation of the Recursive Compensation
Algorithm, see the Problem Statement 3.2.4.

e The Eztended VGraph Algorithm has been presented to solve tlc
drawbacks of the VGraph Algorithm. Each module of the Eztended
VGraph Algorithm has been implemented in the Problem State-
ment 3.2.2, the Problem Statement 3.2.3 and the Problem State-
ment 3.2.4.

(Problem Statement 3.2.1] Consider the problem, shown in Fig. 2.2.1,
assuming that the objects are polyhedrons and their visual informations
are available and they are represented by vertices. Find the collision-
free shortest distance from Start to Goal with § sliced rotation.

Table 3.2.1 Simulation result of the VGraph algorithm.

The shortest path is calculated by the VGraph Algomthm.
Start Node = 1, Goal Node = 27,
Path represented by internal nodes: 1 — 16 — 6 — 27

From To Cost Rotatiion
Start in 0 sliced Az in 7 sliced 4.125 5
Ajin F sliced B) in 7 sliced 5.025 0
B in ¥ sliced , Goal in 0 sliced 4021 -3

The total cost between Start and Goal = 13.179

Fig. 2.4.2 shows the collision-fres shortest Dath with T sliced rota-
tion by the VGraph Algorithm. The path with T sliced rotation has
13.179 Euclidean distance, while the path without sliced rotation has
95.452 Euclidean distance. The path segment with sliced rotaticn is
described in the Table 3.2.1, the path segment without sliced rotation

33

is {Start — C} — B3 — Ba — Goal}. Hence, the sliced rotation of
the moving object can shorten the Euclidean distance. However, thore
is a trade off between accuracy and speed. If the small sliced rotation
is considered, then the better approximation to the shortest path can
be obtained, but more memory space to store each VGraph is nesded.
The result for the Problem Statement 3.2.1 comes from the file [PATH;
in Appendix B. The programming list of this simulation is available in
the Appendix A.

[Problem Statement 3.2.2] Assuming that the horizontal length of the
moving object is 2, its vertical length is 1 and § is § and obstacles are
given as in Fig. 2.3.3, draw the rotational GSpace Obstacles.

Fig. 2.3.6 - Fig. 2.3.11 draw the rotationul GSpace Obstacles. The
Problem Statement 3.2.2 shows that the VGraph Algorithm can handle
the rotation of 2 moving object by the § sliced projection method. The
result of the Problem Statement 3.2.2 comes from the file [ROTATION]
in Appendix D. The programming list for this simulation is available
in Appendix C.

[Problem Statement 3.2.3] Build the Grown Space Obstacles in 3D by
using the Orthogonal Projection Method, assuming that the object in
3D is'a polyhedron, shown in Fig. 2.6.1. The object has the follow-
ing vertices; Pl(:lwylx:l)1 p2(=1:y2:31): P3(z2)y2721)1 P4(22,y1,21),
Pﬁ(zlxylr‘zZ)» Pa(zl: 92:22)7 PT(zZ:yQ: 32)1 PS(::Q: ylszz)) where Ty =
T,y1=35,21=3,29 = 14,y0 = 10,22 = 12.

Fig. 2.6.2 describes three Orthogonal Projections of Workspace D.
Fig. 2.6.3 desczibes the Grown Space Obstacles in 2D. Fig. 2.6.4 de-
scribes the reconstruction of the Grown Space Obstacles in 3D. Fig.
2.6.5 describes the Grown Space Obstacles of Workspace D. The result
for the Problem Statement 3.2.3 comes from the file [PROJECTION]
in Appendix J. The programming list for this simulation is available in
Appendix L

[Problem Statement 3.2.4] Suppose the following verticss are calculavcd
by the VGrapa Algorithm; 5(3,2,4), N1(7,4,10), No(8,8,9), G(4, 11,2)
shown in Fig. 2.7.1. Calculate the shortest path from the S node to
the G node, assuming that the obstacles are polyhedrals.

When ¢ is set to 10"5, the Branch and Bound Method ne=ds 2301668
miliseconds, however, the RCA needs only 416 miliseconds on "/
11/730. The Euclidean distance obtained by the RCA is 48% less thuu
that obtained by the VGraph Algomthm. The RCA is 53,000 times
faster than the BrancA and Bound Method within the same ¢ ffom the
Table 3.2.4. Fig. 2.7.3 describes how fast the RCA works. It is proved
that the sequences generated by the RCA are Cauchy sequences by the

39

Theorem 2.7.4. Therefore, the number of recursive compensation could
be calculated if ¢ is known. Or ¢ could be calculated if the number
of recursive compensation is given. Let’s compare the Lozano-Pérez’s
alleviation method and the Recursive Compensation Algorithm to get
the §a.mé accuracy, ¢, for the Problem Statement 3.2.4. Since ¢ is set to
1072, Lozano-Pérez’s alleviation method needs a lot of memory space
to store (2 + 2 x 8 x 107) vertices for the VGraph, while the Recursive
Compensation Algorithm needs small memory space to store (2+2 x 8)
vertices for the VGraph. Simplifving the VGraph, the Recursive Com-
pensation Algorithm can save not only the memory space but also the
graph search time. The result of the Problem Statement 3.2.4 comes
from the file [BBguiput| in Appendix F and the file [RCApuspue | i= 4p-
pendix H. The programming list of this simulation is available in "he
Appendix E and Appendix G.

Table. 3.2.4 Euclidean distance and Computing time

Algonithm Distance |Computing time
V(Graph 20.3283 0
Branch and Bound 13.7416 2.301.668
RCA 13.7416 416

3.3 Proposed Work

o Improve the 4 sliced projection method by an algorithm to select
the proper §.

e Simplify the VGraph of the polygon by the Convez Rope Algorithm.

¢ Solve the collision-fre= Findpath problem for the dynamic obsta-
cles. '

e Exchange the knowledge on the path planning with other coordi-
nators for the intelligent robot control.

e Compare the Eztended VGraph Algorithm with other algorithm:

60

3%)

10.

11.

13.

REFERENCES

Aho, A. V. and Ullman, J. D., “Data Structures and
Aleonthms Addison-Wesley, Readmg, Mass., 1983.

Akman, Varol, “Shortest Paths Avoiding Polyhedra.l Obstacles in
3-Dimensional Euclidean Space,”Ph.D. dissertation, Dep. Com-
puter and System Eng., Rensselaer Polytechnic Institute, 19853.

Aldefeld, B., “On Automatic Recognition of 3D Structures from 2

Representation,” Computer Aided Design, Vol. 13, No. 2, Marc.
1980, pp. 59-64.

Ahuja, N. and Chien, R. T. and Yen, R. and Bridwel, N., “Interfer-
ence Detection and Collision Avoidance among Thres Dimensional
Objects,”Ist Ann. Nat. Conf Artificial Intelligence, Stanford
Univ., Stanford, CA, August 1980, pp. 44-48.

Bajaj, Chanderjit, “An Effident Parellel Solution for Euclidean
Shortest Path in Three Dimensions,”in Proc. IEEE Int. Conf.
Robotics and Automation, 1986, pp. 1897-1900.

Barte, Robert G. and Sherbert, Donald R., “Introduction to Real
Analysis.” John Wiley 1982.
Boyse, J. W., “Interference Detection among Solids and Sur-

faces,” C'ommumcatzon.s of the ACM, Vol. 22, No. 1, January 1979,
PD. 3 9.

Brooks, Rodney A, “Solving the Find-Path Problem by Good Ren-
reseatation of Free Space,” [EEE Trans. Sysiems, Man, and Cyoer-
netics, Vol. SMC-13, No. 3, March/Aprl 1983, pp. 190-197.
Brooks, Rodney A., “Planning Collision-Free Motions for Pick-and-
Place Ope*‘auons The Internaiional Journal of Robotzcs Research,
Vol. 2, No. 4, Winter 1983, pp. 19-44.

Brooks, Rodney A. and Lozano-Perez, Tomas, “A Subdivision
Algorithm in Configuration Space for Find-Path with Do
tion,”[EEE Trans. Systems, Man, and Cybernetics, Vol. SMC-13,
No. 2, March/April 1983, pp. 224-233.

Chung, C. H. and Sandis, G. N., “An Obstacle Avoidance Motion
Organizer for an Intelligent Robot,” Technical Report RAL-TR-38-
117, Robotics and Automation Laboratory, Rensselaer Polyterhnin
Institute, Trov, New York, 12180-2590.

Clocksin, W. F. and Mellish, C. S., “Programming in
Prolog,” Springer- Verlag, New York, 1987.

Davis, R. H. and Camacho, M., “The Application of Logic Pro-
gramming to the Generation of Paths for Robots,” Robotica. Vol.

61

14.

16.

18.

19.

22.

2, 1984, po. 93-103.

Dupont, Pierre E. and Derby, Stephen, “Planning Collision Free
Paths for Redundant Robots Using a Selective Search of Configu-
ration Space,” ASME Mechanisms Conference 86, 1986.

. Dupont, Pierre E., “Planning Collision Free Paths for Kinemat-

ically Redundant Robots by Selectively Mapping Configuration
Space,” Ph.D dissertation, Dep. Mech. Eng., Rensselaer Polytech-
nical Institute, 1988.

Faverjon, Bernard, “Obstacle Avoidance Using an Octree in the
Configuration Space of a Manipulator,”in Proc. [EEE nt. Conf.
Robotics, Atlanta, GA, March 1984, pp. 504-312.

7. Fu, K. S. and Conzalez, R. C. and Les, C. S. G., “Robotics: Con-

trol, Semsing, Vision and Intelligence,” McGraw-Hill Book Com-
pany, 1987.

Gilbert, Flmer G. and Johnson, Daniel W, “The Application of
Distance Functions to the Optimization of Robot Motion in the
Presence of Obstacles,”in Proc. 29rd Conf. Decision and Control,
December 1984, pp. 1338-1344.

Gilbert, Elmer G., “Distance Functions and Thexr Application to
Robot Path Planning in the Presence of Obstacles,”[EEE Journal
of Robotics and Automation, Vol. RA-1, No. 1, March 1985, pp.
21-30.

. Gilbert, Elmer G. and Johnson, D. W. and .Keerthi, S.S., “A Fast

Procedure for Computing the Distance between Complex Objects
in Three Dimensional Space,”[EEE Journal of Robotics and Au-
tornation, Vol. 4, No. 2, Aprl 1988, pp. 193-203.

. Gouzenes, Laurent, “Strategies for Solving Collision Free Trajec-

tories Problems for Mobile and Manipulator Robots,” The [nterna-
tional Journal of Robotics Research, Vol. 3, No. 4, Winter 1984,
pp. 31-65.

Hart, P. and Nilsson, N. J. and Raphael, B. A, “A Formal Basis for
the Beurstic Determination of Minimum Cost Paths,” [EEE Trans.
Syst. Sci. Cybernetics, Vol. SSC-4, No. 2, July 1980, pp. 100-107.

. Hayward, Vincent, “Fast Collision Detection Scheme by Recursive

Decomposition of -a Manipulator Wrokspace,”in Proc. [EEE Int.
Conf. Robotics and Autornation, 1986, pp. 1044-1049.

. Herman, Martin, “Fast, Three-Dimensional, Collision Free Motion

Planning,”in Proc. [EEE Int. Conf. Robotics and Automnation,
1986, pp. 1036-1063.

. Hunter, Gregory M. and Steiglitz, Kenneth, “Operations on Images

Using Quad Trees,”[EEE Trans. Pattern Analysis and Machine
Intelligence, Vol. PAMI-1, No. 2, Aprnl 1979, pp. 145-133.

. Khatib, Oussama, “Real-Time Obstacle Avoidance for Manipu-

62

GRpE e o T

OF PO QU S

OF #(

27.

29.

30.

31.

32.

33.

34.

35.

36.

37.

- 38
39.

40.

M vy
S A

lators and Mobile Robots,” The International Journal of Robotics
Research, Vol. 5, No. 1, Spring 1986, pp. 90-98.

Lawler, E. L. and Wood D. E., “Branch and Bound Methods: A
Survey,” Operations Research, July-August 1966, pp. 699-719.

. Lozano-Pérez Tomds and Wesier, Michael A., “An Algorithm

for Planning Collision-Free Paths among Polyhedral Obstw
des,” Communications of the ACM, Vol. 22, No. 10, October 1879,
pp. 560-370.

Lozano-Peérez Tomds, “Automatic Planning of Manipulator Trans-

fer Movements,” [EEE Trans. Systems, Man, and Cybernetics, Vol.
SMC-11, No. 10, October 1981, pp. 681-698.

Lozano-Pérez Tomds, “Spatial Planning: A Configuration Spacs
Approach,”JEEE Trans. Computers, Vol. C-32, No. 2, Feburary
1983, pp. 108-120.

Lozano-Pérez Tomds and Jones, Joseph L. and Mazer, Emmiuc]
and O'Donnel, Patrick A. and Grimson, L., “Handy; A Robot Sys-
tem that Recognizes, Plans, and Manipulates,”in Proc. [EEE Int.
Conf. Robotics and Automation, 1987, pp. 843-849.

Lozano-Pérez Tomds, “A Simple Motion-Planning Algorithm for
General Robot Manipulators,” [EEE Journal of Robotics and Au-
tomation, Vol. RA-3, No. 3, June 1987, pp. 224-238.

Luh, J. Y. S. and Campbell, C. E., “Collision-Free Path Planning
for Industrial Robots,”in Proc. 21th IEEE Conf Decision and
Control, 1982, pp. 84-88.

Lumelsky, Vladimir J., “Continuous Motion Planning in Unknown
Environment for a 3D Cartesian Robot Arm,"in Proc. [EEE Int.
Conf. Robotics and Automation, 1986, pp. 1050-1053.

Lumelsky, Vladimir J., “Effect of Kinematics on Motion Planning
for Planar Robot Arms Moving amidst Unknown Obstacles,” JEEE
Journal of Robotics end Automation, Vol. RA-3, No. 3, June 1987,
pp. 207-223.

Luo, G. L. and Saridis, George N., “Optimal/PID Formulation
for Control of Robotic Manipulators,” Tech. Report RAL-TR-84-
034, Robotics and Automation Laboratory, Rensselaer Polytechuic
Institute, Troy, New York, 12180-3590.

Luo, G. L. and Saridis, George N., “L-Q Design of PID Controllers
for Robot Arms,"[EEE Journal of Robotics and Automation, Vol.
RA-1, No. 3, Sep. 1985, pp. 132-159.

Mangasanian, O. L. and Meyer, R. R. and Robinson. S. M., “No,
linear Programming 2,” The Academic Press, New York, 1975.

Maron, Meivin J., “Numercal Analysis,” Macmillan Publishing
Co., Inc. 1982.

Martelli, A. and Motanad, U., “From Dynamic Programming to

63

41.

43.

44.

46.

47.

48.

49.

Search Algorithms with Functional Costs,” Proc. 4th International
Jaoint Conference on Artificial Intelligence, 1975, pp. 345-350.

Martelli, A., “On the Compledty of Admissible Search Algo-
rithms,” Artificial Intelligence, 1977, pp. 1-13.

. Maruyama, K., “A Procedure to determine interseciions betwesn

polyhedral objects,” Int. J. of Computer and Information Scicucc,
1972, pp. 253-266.

Meagher, Donald, “Octres Encoding: A New Technique for the
Representation, Manipulation and Display of Arbitrary 3-D Ob-
jects by Computer,” Technical Report [PL-TR-80-111, Image Pro-
cessing Laboratory, Rensselaer Polytechnic Insttute, Troy, New

York, 12180-3590.

Meagher, Donald, “Octres Generation, Analysis and Manipnla-
tion,” Technical Report [PL-TR-82-027, Image Processing lator
tory, Rensselaer Polytechnic Institute, Troy, New York, 12180-:5C0.

. Meyer, Walter and Benedict, Powell, “Path Planning and the

Geometry of Joint Space Obstacles,”in Proc. [EEE Int. Con/.
Robotics and Automation, 1988, pp. 215-218.

Nilsson, N., “A Mobile Automation: An Application of Artifical
Intelligence Technique,”in Proc. Ist International Joint Confer-
ence on Artificial Intelligence, 1969, pp. 509-520.

Nilsson, Nils J., “Prindple of Artifical Intelligence,” Tioga Publish-
ing Company, Palo Alto, CA, 1980.

Noborio, Hiroshi and Fukuda, Shozo 'and Arimoto, Suguru, “Con-
struction of the Octree Approximating Thres-Dimensional Objects
by Using Multiple Views,” [EEE Trans. on PAMI, Vol. 10, No. 6,
November 1988, pp. 769-782.

Paul, R. P., “Manipulator Cartesian Path Control," /JEEE Trans.
Syst., Man, Cybern., Vol. SMC-9, Nov. 1978, pp. 702-71L.

. Paul, R. P, “Robot Manipulators: Mathematics, Programming,

and Control,” The MIT Press, Cambridge, Massachusetts, 1982.

. Paul, R. P. and Zhang, H, “The Dynamics of the PUMA Manipu-

lator,”in Proc. 1983 American Control Conf., pp. 491-496.

. Pearl, Judea, “Heuristics: Intelligent Search Stategies for Com-

puter Problem Solving,” Addition- Wesley Publishing Company,
1984.

. Peshlin, Michael A. and Sanderson, Arthur C., “Reachable Craps

on a Polygon: The Convex Rope Algorthm,”[EEE Journai af
Robotics and Automation, Vol. RA-2, No. 1, March 1986, pp.
53-38.

. Ray, William O., “Real Analysis,” Prentice Hall, 1988.
. Sardis, George N., “Intelligent Robotic Control,"[EEE Trans. Au-

64

[$1}

60.

61.

62.

63.

tomatic Control, Vol. AC-28, No. 3, May 1983, pp. 347-357.

. Saridis, George N. and Graham, J. H., “Linguistic Dedsion

Schemata for Intelligent Robots,” Automatica, Vol. 20, No. 1, 1984,
pp. 121-126.

Sedgewick, Robert, “Algorithms,” Addison-Wesley Publishing
Company, 1983.

. Tarn, T. J. and Bejezy, A. K. and Han, Shuotiao and Yun, Xi-

aoping, “Inertia Parameters of PUMA 560 Robot Arm,” Technical
Report SSM-RL-85-01, Robotics Laboratory, Department of Sys-
tems Science and Mathematics, Washington University, St. Tonis,
Missouri, 63130.

. Udupa, S§. M., “Collision Detection and Avoidance in Computer

Controlled Manipulators,”in Proc. 5th International Joint Confer-
ence on Artificial Intelligence, MIT, Cambridge, MA, August 1977,
pp. 737-T48.

Valavanis, Kimon P. and Saridis, George N., “A Mathemat-
ical Formulation for the Analytical Design of Intelligent Ma-
chines,” TecAnical Report RAL-TR-86-085, Robotics and Automa-

tion Laboratory, Rensselaer Polytechnic Institute, Troy, New York, -
12180-3590.

Valenti, Joan Har 1, “Study of New Heurstics to Compute Colli-
sion Free Paths of Rigid Bodies in a 2D Universe,” Ph.D. disger-
tation, Dep. D’enginyeria Cibernetica, Universitat Politécnica De
Catalunya, 1987.

Winston, P. A., “Artifidal Intelligence,” Addison- Wesley Publishing
Company, 1984.

Wong, E. K. and Fu, K. S, “A Hierachical Orthogonal Space
Approach to Thres Dimensional Path Planning,”/EEE Journal of

Robotics and Automation, Vol. RA-2, No. 1, March 1986, pp.
42-33.

Appendix A: Simulation of the VGraph Algorithm

1 program VGA (OBSTACLES,GSPACE,VERTICES,PATH, outpul);

2 {)

3

4 Author : C. H. Chung

5

6 Version : 4.7

-

8 Date : December 1, 1988

9 -
10
11
12 This program is designed to simulate the VGraph Algorithm. -
13
14 It consists mainly of 3 procedures.
15 -
16 1. BuildGSpaceObstacles(List).
17 To build the Grown Space CObstacles
18 . INPUT FILE : OBSTACLZS, (GSPACE)
19 . QUTPUT FILE : output, GSPACE =
20 . output of this procedure : List
21
22 2. BuildVGraph(A, List). —
23 . To build the VGraph
24 . The first part of this procedure mainly consists
25 of the Interference Checking, i.e. the Visible
28 Vertices, and the second part of this procedure
27 mainly consists of the VGraph Construction.
28 INPUT FILE —
29 QUTPUT FILZ : VERTICE —
30 . input of this procecdur=s : List
31 . output of this procedurz : A
32 —
33 3. SearchVGraph(A, LinkedPath).
34 To find the shortest path of the VGraph
35 LinkedPath heclds the information of the shortest
36 path by the VGraph Algerithm. -
37 . INPUT FILE :

38 QUTPUT FILE : PATH

39 input of this procedurs : A _
40 . output cf this procedurs : LinkedPath

41

42

43 -
44 Pay a special attentatiocn on the cata structure o List.

45 List consists of Si, 52,

46 Al(l), A2(1), Bl(l), B2(L), Ci1(l), C2(1), —
47 Al(2), Aa2(2), B1(2), B2(2), C1(2), C2(2),

48 AL(3), A2(3), BL(3), B2(3, Ci1(3), C2(3),

49 Al(4), A2(4), BL(4), B2(4), Ci(4), C2(4), _
10) Gl, G2.

66

type

var

procedure BuildGSpaceObstacles(var List

{

PointType = record
X, ¥y : real;
end;
VerticeType = ~Nodes;
Necdes = record
Node : PointType:;
Next : VerticeType;
end;
PathType = ~Item;
Item = record
Data : integer;
Next : PathType:;
end;
CostMatrix = array ([1..28,1..28] of

A : CostMatrix;

List : VerticeType;

LinkedPath : PathType;

OBSTACLES, GSPACE, VERTICES, PATH

real;

text;

VerticeType);

Author : C. H. Chung
Versicn : 2.3

Date : Ncvember 29, 1988

Procedure BuildGSpaceObstacles(List).
To build the Grown Space Obstacles
INPUT FILE : OBSTACLES, (GSPACE)

QUTPUT FILE : output,

GSPACE

output of this procedure : List

This program will build the Grown Space Obstacles.

- ————— ——

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
13Q
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

hh

vv

the herizental length of the object

: the vertical length of

the sliced angle for rotational Grown Space Obstacles

the object

(radiar;

can

var

st
Pi =

Cbije
Obje
hh,

From

3.141592; {Radian}

ct : VerticeType:

ctA, Object3, ObjectC : VerticeType;

vv, rr : real:
, To : PointType;

procedure PrintVertice(List : VerticeType):

{

This prcoccedure will print the Linked List for INPUT.

List ceontains the Start,

Goal, and Obstacles.

var

beg

Current : VerticeType;
in

Current := List;
writeln;

writeln (Current~.Node.x :10:3, Current~.Node.y :10:3);

Current := Current”™.Next;
while (Current<> nil)
do begin

writeln(Current~.Node.x :10:3, Current~.Node.y :10:

Current := Current”~.Next;

end:
writeln;

end;

procedurs CreateQbject(var Object : VerticeType);

{

This procedure creates the object from the input file

by the linked list.

68

151 var

152 Current : VerticeType:

153 begin '

154 Object := nil;

153 if not eof (OBSTACLES)

156 then begin

157 new (Cbject) ;

158 readln (OBSTACLES, Object~.Node.x,
159 Cbject”.Node.y) ;
160 Object~.Next := nil;

181 : Current := Object:

162 while not eof (OBSTACLES)

163 do begin

164 new (Current”~ .Next) ;

165 Current := Current”~.Next:
166 readln (OBSTACLES, Current”.Node.x,
167 Current~.Node.v) ;
168 Current”~.Next := nil

163 end

170 end

171 end;

172

173

174

175

176

177

178 procedure Createlist(var List : VerticeType; From, To : PointType)
179 {

180 This procedure creates the object from the input file
181 by the linked lis<t.

182

183 var

184 - Current : VerticeType;

185 Flag : boolean;

186 begin

187 List := nil;

188 if not eof (GSPACE)

189 then begin

130 new(List);

191 List~.Node := From;

192 List~.Next := nil;

193 Currzent := List;

194

195 new (Current~.Next);

186 Current := Currant”.Nexz;

197 : Current”.Node := From;

198 . Current”~.Next := nil;

199

200 : Flag := true;

201
202
203
204
20s8
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
2438
249
250

while Flag and

dec begin

(not ecf (GSPACE))

new (Current~.Nex%t);

Current
readln (GSPACE,

Current” .Next

if

end;

:= Current”.Next;

:s nil;
((Current~.Node.x = 7.0)

(Current~.Node.y = 1.0))
then Flag := false:

new (Current” .Next);

Current

:= Current”.Next;
Current”~.Node :=
Current”.Next

To;
nil;

new {Current”~ .Next);

Current :=

end;
end;

procedurs GrownObject(var
hh,
{

Current”.Next;
Current”.Ncde
Current” .Next

To;
nil;

Grown
: real);

Object,
vv, T

Current”~.Node.x,
Current”.Node.y);

and

: VerticeType:

{* bad

*7

{STOPPING}

{* CASE =

This procedure builds

0 < g < Pi/2
al = (Alx,Aly) +
a2 = (Alx,Aly)
a3l = (A2x,3a2y)
a4 = (A2x,A2y) +
a5 = (A3x,Ady) +
a6 = (aSx,asSy) +
agd = (Ad4x,Ady) +
a7 = (a8x,a8y) +

Pi/2 < g ¢ Pi

the Grown Space QObstacles.

where h

horizontal length

v : vertical length

h(-cos(g) ,-sin(q))

v(sin(qg) ,-cos(q)}
v(sin(qg) ,-cos(q))
h(-cos(qg) ,-sin(qg))
h(-cos(q) ,-sin(q))
visin(q) ,~-cos(qQ))

251

252 q =g - Pi/2

253 temp = h (to swap h and v)

254 h =v

255 v = tamp

236

257 q-=20

258 Delete a2, a4, a6, a8.

259

.260 q = Pi/2

261 Swap h and v.

262 Delete a2, a4, a6, as8.

263

264 var

263 Current, Head : VerticeType;

266 begin

287 Current := nil;

268 new (Current); :

269 Current”.Node.x := Object”~.Node.x - hh * cos(rr);
270 Current”.Node.y := Object”.Node.y - hh = sin(rz);
271 Currenz~.Next := nil; :

272

273 Head := Object:

274 Grown := Current;

275

276 new (Current”.Next) ;

277 Current := Current~.Next;

278 Current~.Node.x := Object~.Node.x;

279 Curzent”.Node.y := Object”.Ncde.y;

280 Current~.Next := nil;

281

282 Cbject := Cbject~.Nex:;

283 new {Current”~.Next);

284 Current := Current~.Nex:t;

285 Currsnt”.Node.x := Object~.Node.x;

286 Current”.Nocde.y := QObject~.Ncde.y;

287 Currentc~.Next := nil;

288

289 new (Current~.Next);

290 Current := Current~.Next;

291 Current”.Node.x := Object”.Node.x + vv * sin(rr);
292 Curzent”.Node.y := Object~.Node.y =~ vv * cas(rr);
293 " Curzent”~.Next := nil;

294

293 Cbject := Object”~.Next;

296 new (Current~ .Nexxt);

297 Curzent := Current~.Next;

2598 Current”.Node.x := Object”~.Node.x + vv = sin(rz);
299 Curzent”.Nede.y := Object”~.Ncde.y - vv = cos{rz);
300 Current”~.Next := nil;

301
302
303
304
305
3086
307
308
309
310
311
312
313
314
315
316
317
318
318
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
338
340
341
342
343
344
345
346
347
348
349
350

end

procedure RotaticnalGrowth (ObjectA, Object3, ObjectC

{

new (Current” .Next);
Current := Current”.Next’

Current”.Node.x := Object”.Node.
Current”~.Node.y := Object”.Node.

Current”.Next := nil;

Object := Object”.Next;
new {Current” .Next);
Current := Current”.Next;
Current~.Node.x :=
Current~.Node.y :=
Current”~.Next := nil;

new (Current” .Next);
Current := Current”.Next;
Current”.Node.x
Current”~.Node.y :=
Current”.Next := nil;
Object

.
’

:= Heazad;

rz, hh,

Object”.Node.
Object™ .Node.

:= Object”.Node.
Object~.Node.

x
Y

x
b4

x
) 4

vv

+

vv
vv

+

vV
vy

hh

sin(rz)

- hh * cos{z-= :
cos(zz) - hh * sin(r=):
sin(rz) - hh * cos(z=
cos(rz) - hh = sia(zz) -
cos(xr);
sin(rz); -

VerticeTy =

real);

This procedurs will print the Grown Space Obstaces, consider:i-

the rotational effec: X

var

beg

GrownAl, GrownAl,

GrownBl, GrownB2,

GrownCl, GrownC2 : VerticeType;
in

GrownObject (Cbjectd, GrownAl, hh,
GrownObject (ObjectB, GrownBl, hh,
GrownObject (ObjectC, GrownCl, hh,
GrownObjecz (Cbjectd, Grownadz, vv,
GrownObject (ObjectB, GrownB2, vv,
GrownCbject (ObjectC, GrownCZ, vv,

while (GrownaAl <> nil) do
begin)

vy, rz>0); -
vv, r=*Q);

vv, rr>Q);

hh, rz*2 - Pi/2); -
hh, rz*2 - Pi/2);

hh, rz=2 - Pi/2):

Js1
352
383
354
383
356
357
358
359
360
361
362
363
364
3es
366
367
368
363
370
371
372
373
374
37%S
378
377
378
379
380
381
382
383
384
388
386
387
388
389
390
391
3%2
393
394
3cS
396
397
3°8
3¢9
400

writeln(GSPACE, GrownAl~.Node.x :10:4,
GrownaAl”~.Node.y :10:4);

writeln(GSPACE, GrownAl2”.Node.x :10:4,
] GrownA2~.Node.y :10:4);
writeln(GSPACE, GrewnBl~.Node.x :10:4,
_ GrownBl~.Node.y :10:4);

writceln (GSPACE, GreownB2~.Node.x :10:4,
GrownB2~.Node.y :10:4);

writeln (GSPACE, GrownCl~.Node.x .10 4,
GrownCl“.Node.y :10:4);

writaln(GSPACE, GrownC2~.Node.x :10:4,
GrownC2~.Naoda.y :10:4);

GrownAl := GrownAl~.Next”.Next;
GrownAl := GrownA2~ .Next”~.Next;
GrownBl := GrownBl~.Next”.Next;
GrownB2 := GrownB2” .Next”~.Next;
GrownCl := GrownCl~”.Next”.Next;

GrownC2 := GrownC2”.Next”.Next;
wrxteln(GSPAC’),
end;
end; { of Procedure RotationalGrowth }

procedure Partition(var OCbiject, ObjectA, Objects,
ObjectC : Ver
(

ticeType):

This procecdure will partition the whole Object inte 3 small

objects (CbjectA, ObjectB, ObjeczC).

var
i : integer;
- Current, CurrentA, Current3, CurrentC : VerticeType;
begin
Current := QObject;

ObjectA := nil;
new (Objecti);
ObjectA~ .Neode Current”.Node;
ObjectA” .Next nil;
CurrentA := Objecta;
for i := 1 to 3 do
becgin
new (CurrantA~ .Next):’
Curzent := Current”.Next;

-1
(4]

401
402
403
404
405
4086
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
126
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

CurrentA := CurrentA”.Next;
CurrentA~.Node := Current” . Node;
CurrentA~.Next := nil;

end;

Current := Current”.Next;

Object8 := nil;
new (Objects);
ObjectB3~.Node := Current”.Node;
CbjectB~.Next := nil;
Currentl := Objects;
for i := 1 to 3 do
begin
new ({CurrentB3~ .Next) ;
Current := Current”.Next;
Currentd := CurrentB~.Next;
CurrentB”.Node := Current”.Node;
CurrentB~.Next := nil;
end;

[

Current := Current”.Next;

CbjectC := nil;
new (ObjectC) ;
ObjectC~.Node := Current~”.Ncde:;
ObjectC~.Next := nil;
CurrentC := ObjectC;
for i := 1 to 3 do
begin
new (CurrentC~.Next) ;
Current := Current”.Next;
CurrentC := CurrentC~”.Next;
CurzentC~.Node := Current”.Node;
CurzentC~.Next := nil;
end;

end; { of procedure Partition }

begin {______ BuildGSpaceCbstacles
reset (OBSTACLES) ;
rewrite (GSPACE);
rr := Pi / 4;
hh := 2;
vv := 1;

451
482
453
454
455
458
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
4858
486
487
488
489
490
491
492
493
494
495
496
4397
498
499
500

{

CreateCbject(Object);
Partition(Object, ObjectA, Object3, ObjeczC);
RotationalGrowth(ObjectA, ObjectB, ObjectC, rr, hh, vv);

reset (GS?ACE) H (tatrx*tx****tf:rrrt*t**trr*tt*rrrrtr*tt}

From.x := 5.0; { Frem, To }

Froem.y := 7.0;

To.x := 13.0; (t:rtxr*rtrr*r:x—x*xxt****trr:t**rra**w:w}
To.y := 15.0;

Createalisc(list, Froem, To);

writeln(' Linked List for INPUT ___ ');

PrintVertice (List);

writeln;

writeln;

writeln(' INPUT FILE : OBSTACLES'):;

writeln;

writeln(' QUTPUT FILE : GSPACE (for the Grown Spaca Jbstacles
writeln(' VERTICES (for the Visible Woarsicas) '):
writeln(' PATH (f£or the shortest parth) ;:
writeln(' output (for this display)).

end; - { of Procedures BuildGSpaceCbstacles }

procedure BuildVGraph(var A : CostMatIix; var List : VerticeType);

Auther : C. H. Chung

Version : 2.0

: Ncvember 17, 1988

This program will build the Visibility Grach.

BuildVGrapn (A, List)

To build the VGraph
The fizst part oI this procedure mainly consists cf
the Interference Checking, i.e. the Visible Vertices,

(9]

501 '~ and the second part of this procedure mainly consists

502 of the VGraph Construction. -
503

S04 Pay a special attentation on the data structure of List.

sS85 List consists of Si, SZ2, -
S3a6 Al(l), A2(1), Bl(1), B2(1), Cl(L), C2(1),

507 Al(2), A2(2), B1(2), B2(2), Cl(2), C2(2),

sés8 Al(3), A2(3), B1(3), B2(3), Cl(3), C2(3, -
509 Al(4), A2(4), Bl(4), B2(4), Cl(4), C2(4),

510 Gl, G2.

511 }
512 -
513 var

514 From, To : VerticeType;

515 i, j, n : integer; -
518

517

518 : -
519

520

521

522 -
523 {

524 This procedure is very useful in printing a Linked List

525 to debug the procedure of BuildVGraph. So, this procedurz _
526 will remain in the main programming sheet for the future

527 debugging.

528

529 -
S30 procedure PrintVertice(lList : VerticeType);

531

532 This preocedur2 will print the Linked List of the shortest pata~—
533

534 var

535 Currzent : VerticeType; -
536 begin

537 Current := List;

£38 writeln (VERTICES,Current”.Node.x :10:3,

539 Current”.Node.y :10:3); -
540 Current := Current”™.Next;

541 while (Curzent<> nil)

542 do begin —
S43 writaln(VERTICES,Current~.Neocde.x :10:3,

544 Current” .Node.y :10:3);

5453 Current := Current”.Next;

546 end; a
547 writeln (VERTICES);

S48 end;

S49 —
530

851
552
553
554
535
536
557
558
589
SeaQ
Sel
S62
S63
564
5653
566
567
568
569
570
571
572
573
574
575
s76
577
S78
S73
580
581
582
583
584
585
586
587
588
S89
590
591
592
S93
534
595
596
597
558
599
600

procedure PrintAMatzix (A
{

CostMatrix);

This procedure will print a Matzi

]
- .

var
i, j : integer;

begin
for i := 1 to 28 do
begin
writeln (VERTICES) ;
for j := 1 to 28 do
if A[(i, 3] < 999
then writeln (VERTICES,' A[',
3 :2:0,'} ="
end;
end;
procedure LineEguation(frem, To PointType;

{

i
’

:2:0.',",
Ali, 3] :10Q:4);

var a, b : real):;

This procedure will generate a line egquation thrzugh

Y2 - Yi
Y 1=z —c--mmee- (X - X1) + Y1
X2 - X1
Y2 - Y1 X2*Y1 - ¥Y2*X1
12 mewmaca—— (X) + ===
X2 - %1 X2 - X1
= a*X + b
begin
a := (To.y - From.y) / (To.x = From.x);
b := (To.x * From.y - To.y * From.x) / (To.x - Tzom.x):;
end;
ORI

OF PCLH - ..

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
628
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650

function max(a, b : real): real;

{
This function calulate the maximum.
begin
if a > b
then max := a
else max := b;
end;

function min{a, b : resal): real;
{

This function will calculate the minimum. - T
begin
if a>b -
then min := b
else min := a;

end:;

function FinalCheck(a, b, X1, X2, X3, X4, -

Yi, Y2, ¥3, Y4 : real): boolean:;
{

This function will find the Interferz=nce in the normal case.—

var -
X, Y,
Xmin, Ymin,
Xmax, Ymax : resal;

begin

631
652
633
654
653
6356
637
658
659
664Q
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
679
677
678
679
630
681
682
683
684
685
686
687
688
689
630
€31
6392
633
694
698
696
697
638
699
700

Xmin- := max(Xl, X3);
fmax := min(X2, X4);
Ymin := max(¥Yl, min(¥3,
Ymax := min(Y¥2, max(¥3,

Y 1= ¥2; .
X := (Y - b) / a;
if (X > Xmin) and (X < Xmax)
then FinalCheck := true
else begin
X := X2;
Y := a * X + b;
if (Y > Ymin) and
then FinalCheck
else begin
Y := ¥Y1;
X :=
if
end;

end;
end;

function Detectlnterferesnce (Object
From, To

{

Y¥4)):
Y4));

(Y < Ymax)
1= true

(Y - b) / a;
(X > ¥Xmin) and (X < R,

then FinalCheck := true
else begin

X := X1;

Y 1= a * X + &

if (Y > ¥min} . - e
then Finn. . -
eglse Finecuivauoh

end;

VerticeType:
PointType) : booclean;

This function will classify the Interference.

var
a, b,
tempX, tempY,
X1, X2, X3, X4,
Yl, Y2, Y3, Y4
Current

: real;
VerticeType;

begin

ORIGINAL o.s 4,
OF POOR QU&LITY

701
702
703
704
708
706
707
708
709
710
711
712
713
714
715
716
717
718
718
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
738
7386
737
738
739
740
741
742
743
744
745
746
747
. 748
749
750

Current := Qbject;

{1. Swap fFrom and To by the X position,
in order to set From to the left of To.}
if From.x > To.x
then begin

tempX := From.X;
tempY := From.y;
From.x := To.x:
From.y := Ta.y:

To.x := tempX,
To.y := tempY¥;
end;

{2. Define X1, X2, X3, X4, Y1, Y2, Y3, Y4.}
X1 := Current”~.Node.x;

Y2 := Current”.Node.y;

Current := Current”.Next;

X2 := Current”.Node.x;

Current := Current”.Next;

Yl := Curzant~.Node.y;

Current := QObiject:

X3 := From.x;
Y3 := From.ys
X4 := To.x;
Y4 = To.y:

{3. Find the x, y boundary of the object.
However, Step 2 implies Step 3.}

(4. Find the line equation throught From and To and its boundary.}

if (X3 = X4) and (Y3 = ¥Y4)
then DetectlInterference := false
else i1£f (X3 = X4) '
then 12 (X3 > X1) and (X3 ¢ X2)

then 1if (min(¥3,¥4) > ¥2) or (max(Y:.. -

then Detectlnterfersnce :=

: bl

else Detactlnterfarance := true

else DetactlInterference := false
else i (Y3 = Y4)
then 1if (¥3 > Y1) and (¥3 ¢ ¥2)
then if (min(X3,X4) > X2) or
(max(X3,X4) < X1)

then DetectIntarferance
glse DetectlInterference
else DetectlIntarference := false

else begin
LineEguation(fFzom, To, a, b);

{S. &« 6. is implied in DetectlInterference. }

30

false
true

751
752
753
754
783
756
757
758
759
760
761
762
763
764
765
766
767
7638
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
788
786
787
788
789
790
791
7392
793
794
798
796
797
798
799
800

if (min{Y3,Y4) >= ¥Y2) or

{(max(¥3,¥Y4) <= Y1) or

(min(X3,X4) >= X2) or

(max (X3,¥X4) <= X1)

then DetectlInterference :=
else DetaectlInterference :=
FinalCheck(a,b,X1,xZ2,
X3,X4,¥Y1,¥2,¥3,v4,

falsa

end;
end;

This prcocecdure is very useful in checking the Interlerence
between the line and obstacles, and if there is any
interfersnce, then this procedure will print out the
information on it. However, this procedure will remain

in the main programming sheet for the future debugging.

procedure PrintlInformationCnInterference(Object : VerticeType:!
Frem, To : PointType;
First, Second : char);

Sa e

var
Curzant : VerticeType;
begin
Current := Objec=;
if Detec=zInterference(Current, Frem, To)

then begin

writeln(VERTICEZS,' in Object ', First, Second):;
PrintVertice (Currant);
end;
end;
)
funcztion Interfersnce(list : VerticeType; Frem, To : PoinctTyge:
) 81
ORI

OF POCR i

801
8Q2
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850

COUNT : integer): bcolean;

This function will find the Interference with the

Grown Space Obstacles.

rotacional

var

Current,

HeadAl, HeadAZ,

HeadBl, HeadB2,

HeadCl, HeadC2Z,

Objectal, Objectal,

Objec=81, Object82,

ObjectCl, ObjectC2 : VerticeType;

begin

Current := List;
Current := Current”.Next; { Skip
Current := Current”.Next; { Skip

ObjectAl := nil;

new (Qbjectal);

ObjectAl~.Node := Current”.Node;
ObjectAl~.Next := nil;

Current := Current”.Next;

ObjectA2 := nil;
new (Cbjectal);
ObjectA2~ .Node := Curzesnt”.Node;

ObjectA2”.Next := nil;
Current := Current”.Nex<T;
Cbject3l := nil;

new {ObjectBl);
OCbjec=21".Ncde

Cbject31l” .Next nil

Current := Current” . Next;
ObjectB2 := nil;

new (ObjectB2);

Object32~.Node := Currsnt”.Node;
Object32~.Next := nil;

Current := Current”.Nex<t;
ObjeczCl := nil;

new (QbjectCl) ;

ObjectCl~.Node Current” .Node;
ObjectCl”.Nex= nil;

Currant := Current”.Next;

851 ObjectC2 := nil;

852 new (ObJjectC2);

853 ObjectC2” .Node := Current”.Node;

854 ObjectC2~.Next := nil;

885 Current := Current”.Nex<Z;

8Seo

857 HeadAl := ObjectaAl;

853 HeadA2 := Objectal;

829 . HeadBl := ObjeczBl;

860 HeadB2 := Object3d2;

g6l HeadCl := ObjectCi;

862 HeadC2 := ObjectC2;

863

864 while Current”~.Next”~.Next <> nil { Skip G1, G2.
865 do begin

868 new ({ObjectAl” .Next);

867 CbjectAl := CbjectAl”.Next;

868 ObjectAl~ .Node := Current”.Node;
8693 ObjectAl~.Next := nil;

870 Curzent := Current”.Next;

871

872 ' new (CbjectA2~ .Next) ;

873 ObjectA2 := Objectad2~ .Next;

874 ObjectA2~.Noce := Curresnt”.Node;
875 CbjectAl2~.Next := nil;

876 Curzzsnt := Currzant”.Next;

877

878 new (Object31~.Next);

879 QObject3l := ObjectBl~.Nexx;

880 Cbjecz31~.Ncde := Current”.Ncde;
881 Objec=31~.Next := nil;

882 Curzent.:= Curzent”.Next:;

883

884 new{Ckbject82” .Nexzt); .

883 Cbject32 := Cktject22~.Nex=z;

886 Objecz32~.Node := Current~.Node;
887 Object32~.Next := nil;

8§88 Current := Curresnt”.Next;

889

8390 new(CbjectCl~.Next);

891 : Objecz=Cl := QObjeczCl~”.Nex<t;

892 Objec=Cl~.Node := Curzent”.Node;
893 Cbjec=Cl~.Nexz := nil;

894 Current := Current”.Next;

898

896 new (ObjectC2~ .Nex%);

897 ObjeczC2 := QObjectC2”.Nex:t;

898 ObjeczC2~.Nocde := Curzent”. Vode,
899 CbjeczC2~.Next := nil;

8300 Current := Curzant”.Next;

9501
902
903
904
905
906
307
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
330
931
932
933
934
335
$36
937
938
939
940
941
942
943
944
945
946
947
948
949
950

end;
ObjectAl := HeadAl;
ObjectA2 := HeadA2l:;
ObjectBl := HeadBl;
Object32 := HeadB2;
ObjectCl := HeadCl;
ObjectC2 := HeadC2;
if COUNT = COUNT div 2 * 2

then if Detectlnterierence(ObjectA2, Fzecm, To) or
DetectInterference (ObjectB2, Frem, To) »n
Detectlnterference(ObjectC2, From, To)
then Interference := true
else Interference := false

else if DetectlInterference(ObjectAl, From, To) or
DetectInterference(ObjectBl, From, To) or
DetectInterference(ObjectCl, From, To)
then Interference := true
else Interference := false;

end: { Of function Interference

(-

function CrossDiagonal (Object : VerticeType;
Frem, To : PointType): boolean;
{

This function will determine whether two vertices are
the disgcanl of the same objec=.

var
Curzentl, Current2, Currentl, Current4d4 : Verticelypw,
tampX, tempY : real;

begin
Currentl :
Current2 :
Current3
Currentd

Object:

Currentl”~.Next;
Current?2”.Next;
Current3” .Nex¥t;

now uon

if From.x > To.x
then begin

tempX := From.X;
tempY := Frem.y;
From.x := To.X;

84

in

981
952
983
954
955
956
957
958
959
960
. 961
962
963
564
965
966
967
963
969
870
971
972
873
974
975
976
977
978
879
980
981
982
983
984
583
986
987
988
989
9sQ
991
992
993
994
995
996
957
9958
999
1000

From.y := To.y;

To.x := temgX;

To.y := tempY,
end;

if (Currentli”~.Ncde.x
(Currentl”.Node.y
(Current3~.Node.x Tc.x) and
(Current3~.Node.y To.y)
then CrossDiagonal := truye
else 1f (Current2”.Node.x
(Current2” .Necde.y
(Current4~.Node.x

From.x) and
From.y) and

oW ouou

Te.x) and
To.y) and
From.x) and

(Current4~.Neode.y From.y)

then CrossDiagonal := true

else CrossDiagonal := false;
end; { Of function CrossDiagonal }

function CrossVertices(List : VerticeTvpe;

From, To : PointType): boclean;
{

This function will find the Interference with the rotational
Grown Space Obstacles.

var
Current,
HeadAl, HeadA2,
Head31l, Head32,
HeadCl, HeadCZ2,
ObjectAl, Cbjectil,
OCbjectBl, Object3Z2,
ObjectCl, CbjectC2 : VerticeType;

begin
Current := List;
Current := Current”.Next; { Skip Si.}
Current := Current”.Next; { Skip s2.}

ObjectAl := nil;

new (Objectal);

CbjectAl~.Node Current”.Ncde;
ObjectAl~.Next nil;

Current := Cuzrant”.Next;

~J01
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
P)26

1027
1028
1029
1030
1031
10322
1033
1034
1038
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
10486
1047
1048
1049
1050

Objectal

:= nil;

new (ObjectAl) ;

ObjectA2~.Node := Current”.Node;
ObjeczA2~ .Next := nil;

:= Current” .Next;

Current

Object3l

:= nil;

new (Object3l);

Object31~.Node
Object31” .Next

Current

ObjectB2

-
-

"

Current”™ .Node;
nil;
= Current” .Next;

:= nil;

new (ObjectB2);

Object32~.Node := Current”.Node;
Objecz=B2~.Next := nil;

:= Current”.Next;

Current

ObjectCl

:= nil;

new (ObjectCl);
ObjeczCl~
ObjectCl~.Next := nil;

:= Current” .Next;

Current

ObjectC2

.Node := Current~.Node;

:= nil;

new (ObjectC2) ;
ObjectC2~ .Node := Current”.Node;
ObjectC2~ .Nexz := nil;

Current := Current”.Next;

HeadAl := ObjeczAl:;

HeadA2 := Cbjectal;

HeadBl := Object3l;

HeadB2 := Cbject3Z:

HeadCl := ObjeczCl:

HeadC2 := ObjectC2:;

while Current~.Next~.Next <> nil

do begin

new (ObjectAl” .Next);
ObjectaAl := CbjectAl”.Next;

{ Skip G1,

ObjectAl”~.Node := Current~.Node;

ObjectAl~.Next := nil;
Current := Currant”.Next;

new (ObjectA2” .Next);
ObjectA2 := ObjectA2”.Next;

ObjectA2~.Neode := Current”.Node;

Objec=zA2~.Next := nil;

36

G2.}

1081
10s2
10s3
1054
10€5
10se
1057
10358
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1063
1070
1071
1072
1073
1074
1075
1076
1077
1078
107s
1080
1081
1082
1083
1084
108s
108¢
1087
1088
1089
1090
1091
1092
1093
1094
109s
1096
1097
1098
1099
1100

Current := Current”.Nex=t:

new (Cbject31~ .Next):;

Object3l := Object3l~.Next;
Object31~.Node := Current~.Nocde;
Cbject31~.Next := nil;

Current := Current”.Next:

new (ObjectB82~ .Next);
Cbject32 := QObject32~.Nex<;

Cbject32~.Node := Currenc”~.Nocde;

ObjectB82~.Next := nil;
Curzent := Current”.Next:;

new (ObjectCl~.Next);

ObjectCl := ObjectCl~.Next;
ObjectCl~.Naode := Current~.Node;
ObjectCl~.Next :=

nil;

Current := Current”.Next:;

new (ObjectC2~ .Next);

ObjectC2 := ObjectC2”~.Next;
ObjectC2”.Node := Current~.Node;

ObjectC2~.Next := nil;
Current := Current”.Next;

end;
CbjectAl := HeadAl;
ObjectA2 := HeadA2;
ObjectBl := HeadB1l;
Object32 := HeadB2:;
CbjectCl := HeadCl;

ObjectC2 := HeadC2:

if CrzecssDiagonal (Objectal,
ressDiagonal (ObjectzAZ,
CrossDiagonal (Cbject3l,
CrossDiagonal (ObjectB2,
CrossDiagonal (ObjectCl,
CrossDiagonal (ObjectC2,
then CrossVertices
else CrossVertices

From,
From,
From,
From,
From,
From,

1= trye
:= false;
end; { Of Function CrossVertices }

Tao)
To)
To)
To)
To)
To)

Qr
or
or
or
Qr

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1128

1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

1149 -

1150

function GrownDeadNode (Object : VerticeType;
Data: PointType) : boolean;

{

Tnis_function will classify the Dead node.

var
X1, X2, X3,
Yl, Y2, Y3 : real;
Current : VerticeType:

begin
Current := Object;

X1 := Current~.Node.x;
¥2 := Current”~.Node.y:;

Currant := Current”.Next;

%2 := Current”.Necde.x;

Current := Current”.Next;

¥l := Current”~.Node.y:
Current := Object;

X3 := Data.x;

Y3 := Data.y;

if (X3 > X1) and (X3 < X2) and (¥3 > Y1) and (¥3 < ¥2)

then GrownDeadNode
else GrownDeadNode
end;

function DeadNcede(List

2 true
:= false:;

VerticeType; Data

0
0

iatTyz2:

i : integer): boclean;

{

This function will find the Dead Node with the rotatlional
Grown Space Obstacles.

var
Current,
HeadAl, HeadA2,
HeadBl, HeadBZ,
HeadCl, HeadCZ,
ObjectAl, Objectaz,
ObjectB1, ObjectBZ,

ObjectCl, ObjectC2 : VerticeType;

88

_J.J.Sl
1152
1153
1154
— 11325
1186
1157
— 1158
1159
1160
1161
1162
1163
1164
— 1165
1166
1167
— 1168
1165
1170
1171
1172
1173
1174
— 1178
S
1177
1178
1179
1180
1181

- 1182
1183
1184

-~ 1185
1186
1187
1188
1189
1150
1131

— 1182

1193

1194

— 1185

1196

1197

1198

1189

1200

begin

Current :
Current :
Current :

List;
Current”~.Next;
Current” .Next;

wonowu

ObjectAl := nil;
new (Objectal);

ObjectAl~ .Node := Current”.Node;

ObjectAl”~.Next := nil;
Current := Current”™.Next:

ObdjectA2 := nil;
new (ObjectAl);
ObjectA2~.Nade
CbjectAZ~ .Next nil;
Current := Current”~.Next;

ObjectBl := nil;
new (ObjectBl) ;
Object31~.Ncde :
Object31~.Next := nil;

Current := Current”.Next;

Object32 := nil;
new (CbjectB2);

Current”

.Node:;

:= Current” .Node;

Object32~.Node := Current”.Node;

ObjectB2~.Next := nil;
Current := Current”.Next;

ObjectCl := nil;
new (OCbjectCl) ;

ChjeczCl”.Ncde := Curz
CbjeczCl~.Next := nil;
Currant := Currasnt”.Nex%t;

CbjectC2 := nil;
new (Chjectl2);

ObjectC2”.Node := Curzrent”
CbjectC2~.Next := nil;
Current := Current”.Next;
HeadAl := Objectal;

HeadA2 := Objectal;

HeadBl := ObdjectBl;

HeadB2 := Object32:;

HeadCl := ChjectCl;

HeadC2 := CbjectC2;

while Curzent”.Next”.Next
do begin

an%” Ncde;

.Node:

<> nil

{ Sxip S1.}
{ Skip S2.}

1201
1202
1203
1204
1205
12086
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1238
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250

new (ObjectAl” .Next);

ObjectAl := ObjectAl” .Next;
ObjectAl~.Node := Current”.Node;
ObjectAl~.Next := nil;

Current := Current”.Next;

new (ObjectA2~ .Next);

ObjectA2 := QObjectAZ”.Next;
ObjectA2~ .Node := Current”.Node;
CbjectA2~ .Next := nil;

Current := Current”.Next;

new {Object381" .Next);

ObjectBl := Object3l~”.Next;
ObjectBl1~.Node := Current”.Node;
ObjectBl~.Next := nil;

Current := Current”.Next;

new (ObjectB2" .Next);

ObjectB2 := Object32~.Next;
ObjectB2~.Node := Current”.Node;
ObjectB2~ .Next := nil;

Current := Current”.Next;

new (CbjeczCl” .Next);

ObjectCl := QObjectCl”.Next;
ObjectCl~.Node := Current”.Node;
ObjectCl~.Next := nil;

Current := Current”.Next;

new (ObjectC2~ .Next) ;

Object=C2 := ObjectC2”.Next;
Obsec=C2~ .Node := Curresnt”.Node;
ObjectC2~.Next := nil;

Current := Curzant”®.Next;

end;

CbjectAl
ObjectAl
ObjectBl
ObjectB2
CbjectCl
ObjectC2

if£ (1 =

HeadAl;
HeadAZ2:
HeadB1;
HeadB2;
HeadC1:
HeadC2;

i div 2 * 2)

then if GrownDeadNode (CbjectA2, Data) or

GrownDeadNode (ObjectB2, Data) or
GrownDeadNode (ObjectC2, Data)
then DeadNecde := true

else DeadNoede false

90

ORIGINAL PAGE IS
OF POOR QUALITY

1251
1252
1253
1254
1253
1256
1257
1258
1289
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
5276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300

oG W

else if GrownDeadNode (ObjectaAl, Data) or
GrownDeadNode (CbjectBl, Data) or
GrownDeadNode (CbjectCl, Data)
then DeadNode :=z true
else DeadNode := false;
end;
begin { Builliooo .. |
rewrite(VERTICES):
n := 28; { Dimension of Cost(n,n] }
for i := 1 to n do
for j := 1 to n do
Afi,J] := 9999.99; { 5999.99 means the infinit’ ~-. "
From := List;
To := List;
i :=0;
j = 0;
while From <> nil do
begin
1 := i +1;
if DeadNode(List, From~.Node, 1i)
then { nothing }
else begin
To := List;
j o= 0;
wiiile To <> nil do
begin
j o= 3+ 1:
if (From = To) or
CrossVertices(List, From~.Ncde, To~.Node)
DeadNode (List, From~.Node, 3j) or
DeadNode (List, To~.Node, j) or
Interferesnce(list, From~.Node, Tc".MNode,
then { nothing }
else A[i,J] := sgre
(From”~ .Nede.x - To~.Node.
(From~.Ncde.x - To~.Node.
(From~ .Node.y - To~.Node.:
(Frem”™ .Nede.y - To~.Node.v
To := To”~.Nex:z:;
end;
91
ORIGIAL

OF PUPR ¢ I

1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1313
1318
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1323
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1343
1346
1347
1348

1349
1350

o

end;

From
end;

PrintAMatzix (A);

:=2 From”®

procedure SearchVGraph (A

.Nexz;

{ Of Procedure BuildVGraph }

CostMatrix; var LinkedPath : PathType):

Author :
Version
Date :

C. H. Chung

November 7,

1988

This program will calulate the shortest path by Floyd Algorithm.

SearchvVGraph (A,

LinkedPath)

. To find the shortest path of bhe VGraph
. LinkedPath holds the information of the shortest path

By the
INPUT
QUTRUT
input
output

LinkedPath

A : CostMatrix:;
P : PathMatrix;
n : integer:;
Cost : real;

PathType;

/*
/*
/w
/x
/*

VGraph Algeorithm.
FILZ
FILZ
of this procedures : A

of this procedure : LinkedPath

PATH

=x*x gutput of procedure SearchVGraph **~
Linked LinkedPath for the shortest patd */

A : Cost matrix for Floyd Algorithm */
P : Path Matrix for Floyd Algorithm */
Dimension of Cost (2ath) Matrix */

Cost of the shortest path

type

PatnMatrix

array (1..2

8,1..28] of integer;

1351 var

1352
1353
1354
1355
1356
13587
1358
1358
1360
1361
1362

1363

1364
13653
1366
1367
1368
1363

_ 1370

1371
1372
1373
1374
1375

376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1383
1330
1391
1392
1393
1394
1395
1396
1397
1398
139s
1400

P : PathMatrix; { Path Matrzix for the Floyd Algorithm }
n : integer; { Dimension of the Cost (Path) Matrix)
Cost : real; { Cost of the shortest path }

procedure InitializePath(var P : PathMatrix;
var LinkedPath : PathTvype.
var n : integer);

This procedure will initialize the Cost Mat-ix and Path Mactr-ix.
The Path Matrix are automatically set to zero.

The Cost Matrix should be defined by User.

The Start node and Goal node should be defined by User

9999 means the infinitive.

var
i, j : integer;
Start, Goal : integer;

begin
n := 28;
Start := l’ (trt*‘lI**t****t*??**??*?**?r‘l*t?*r'l'
Goal := 27; { Start, Goal }
(*rrrt:rx*rrtwrtrxxrrrr*trrrrrrrrrar
for i := 1 to n do
for j := 1 to n do
P{i,3] := 0;

LinkedPath := nil;
new (LinkedPath);
LinkedPath~.Data := Star
LinkedPath~.Next := nil:;
new(LinkedPath~.Next);
LinkedPath”~.Next~.Data
LinkedPath”.Next”~.Next
end;

ot

.
’

Geoal;
nil

P S Ak

GF BUVR G gy

1401 procedure PrintPath(LinkedPath : PathType);
1402 {

1403 This procedure will print the Linked LinkedPath of the
1404 path.

1405 -

14086 var

1407 Current : PathType:;

1408 begin

1409 write (PATH, ' Path represented by internal nodes = ');
1410 Current := LinkedPath;

1411 write (PATH, Current~.Data :7);

1412 Current := Current”.Next;

1413 while (Current<> nil)

1414 do begin

1415 write (PATH, Current~.Data :7);
1416 Current := Current”~.Next;

1417 end;

1418 writeln(PATH) ;

1419 end;

1420

1421

1422

1423

1424

1425

1426

1427 procedure WriteVertice(i : integer);

1428 {

1429 This procedure prints vertice.

1430

1431 begin

1432 case i of

1433 1 : write(PATH, ' START in 0° sliced');
1434 2 : write(PATHY, ' START in 90" sliced');
1435 3 : write(PATH, ' Al in 0 sliced'):
1436 9 : write(PATH, ' A2 in Q' sliced'):;
1437 15 : write(PATH, ' A3 in Q0 sliced'):
1438 21 : write (PATH, ' A4 in Q' sliced'):
1439 5 : write(PATH, ' Bl in 0° sliced'):
1440 11 : write(PATH, ' B2 in 0" sliced'):
1441 17 : write(PATE, ' B3 in 0 sliced');
1442 23 : write(PATH, ' B4 in 0 sliced');
1443 7 : write(PATH, ' Cl in Q' sliced');
1444 13 : write (PATH, ' C2 in 0 sliced');
1445 19 : write(PATH, ' C3 in 0% sliced'):
1446 25 : write(2ATHE, ' C4 in Q' sliced'):
1447 4 : write(PATH, ' Al in 90" sliced'):
1443 10 : writce(PATH, ' A2 in 90° sliced");
1449 16 : writza(PATH, ' A3 in 90° sliced");
1450 22 : writa(PATH, ' A4 in 90° sliced'):

94

1451
1452
1453
1454
1453
1456
1457
1458
1459
1460
1461
1462
1463
~1464
1465
1466
1467
1463
1469
1470
T1471
1472
1473
—1474
" 475
176

_ 1477
1478
1479
1480
— 1481
1482
1483
— 1484
1485
1486
1487
1488
1489
1490
— 1491
1492
1493
1494
1495
1496
1457
— 1498
1499
1500

6 : write (PATH, ' Bl in

12 : write(PATH, ' B2 in

18 : write(PATH, ' 83 'in

24 : write(PATH, ' B4 in

8 : write(PATH, ' Cl in

14 : write(PATH, ' C2 in

20 : write(PATH, ' C3 in

26 : write(PATH, ' C4 in

27 : write(PATH, ' GJOAL in

28 : write(PATH, ' G3AL in

end; :

end;
o

{

90" sliced');
90" sliced');
90" sliced');
90" sliced');
90" sliced');
90" sliced');
90° sliced');
90" sliced'):;
0" sliced');
90° sliced');

cedure PrintPrettylinkedPath(A: CostMatrix;

var LinkedPath : PathType):

This procedure will print all nodes of the shortest pata anc

rotation between any two nodes.

PrintPath will print the Linked LinkedPath of the shortasc

path.

var

beg

Current
Flag
£irst,
i, 3

in
PrintPath(LinkedPath) ;
write (PATH, '

PathType:
integer;
second
integer;

integer:;

writaln (PATH, '

writeln (PATH);
writeln (PATH) ;

write (PATH, '

writeln (PATH, '
Curresnt := LinkedPath;

From

first := Current~.Data med 2;

second := Current~.Next~.Data mod 2;
Flag := £irst - second:

i := Current~.Data;

3 := Current~.Next~.Data;

writeln (PATH);

WriteVertice(i);)

WLite (PATH, ' =—===- -—> ')

Ta');
Cost

{ 2 is ralazed wi=zs
the sliced-angle.:

1501
1502
1503
1504
1508
1506
1507
1508
1309
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1221
1522
1523
1524
1528
Ls28
1527
1528
1529
1530
1531
1532
15323
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

WriteVertice(3)

write (PATH, ' 'LAall, 3] :7:3): -
case Flag of
-1 : writeln(PATH, ' <=90'>");
-0 : writeln(PATH, ' <0*>"); -
1 : writeln(PATE, ' <90°>");
end:
Current := Current”.Next;

while (Current~.Next <> nil)
do begin

i := Current~.Data; -

j := Current”.Next”.Data;

if (Current~.Next”~.Next = nil) or
(Current~ .Next~.Data > 26)
then j := Current~.Next”.Data;

WriteVertice(i);

write (PATH, ' -—--==-—-- > ")

WriteVertice(3); -
write (PATH, ' ', A(i,Current”~.Next~.Data] :7:3):
first := Current~.Data meod 2;

second := Current~.Next”~.Data mod 2: -—

Flag := first - second;
case Flag of

-1 : writeln(PATH, ' <-90°>"); _
0 : writeln(PATH, ' <0*>");
1 : writela(PATH, ' <90°>');
end;
Current := Current”.Next; -

end:;
end;

procedure PrintCostAndPath(A : CostMatrix; LinkedPath : PathTyz-
Cost : real);
{

This procedure will print the shortest path and its ccst.

var
Current : PathType; :
Start, Goal : integer; —

begin

Current := LinkedPath;
Start := Current~.Data;

96

_ L5351 while (Currzentz”.Next <> nil)

1552 do Current := Current”.NexZ;
1533 Goal := Current~.Data;
1554
— 1533 writeln (PATH);
15356 writeln (PATH);
1557 writeln (PATH) ;
1538 wriceln (PATH) ;
15593 write (PATH, ' ')
1560 writeln (PATH, ' "
1561 writeln (PATH);
1562 write(PATH, ' The shortest path is calculated by');
1563 writeln(PATH, ' the Graph Search Algorithm.');
1564 writeln (PATH) ;

— 15653 writeln(PATH, ° Start Node = ', Starc :3,
1566 ' Goal Ncde = ', Goal :3);
1567 writeln (PATH);

_ 1568 write (PATH, ' 'Y
1569 writeln(PATH, ' 'y ;
1570 writeln (PATH) ;

1571 PrintPretiylinkedPath(A,LinkedPath);

1572 writeln (PATH) ;

1573 write (PATH, '
1574 writeln(PATH, '

- 1578 writeln(PATH) ;

‘. .576 writeln(PATH, ' The Total Cost = ', Cost :6:3);
1577 write (PATH, ')

_ 1578 writeln (PATH, ' "y
1579 writeln (PATH);

1580 writeln (PATH)
1531 end;

= 1382
1583
1584

— 1585
1586
1587
1588
1589 procedure FindPath(var P : PathMatrix; var LinkedPath : PathTyzs
15380 {

1591 This procecdurz will find the shcertest path foom Poiiy las=ix.

— 1592 L
15383 var
1594 i, j : integer:;

— 1585 Current : PathType;

1596

1597 begin

1598 1 := LinkedPath~.Data;

153893 j := LinkedPath~.Next~.Data;
1600 Current := nil;

1601 if P[i,3] = 0

1602 then

1603 else begin :

1604 new (Current);

1605 - Currsnt~.Data P(i,3]:

1606 Current~.Next := LinkedPath~”.Next;
1607 LinkedPath” .Next := Current;

1608 FindPath (P, LinkedPath);

1609 FindPath (P, LinkedPath” .Next);
1610 end;

1611 end;
1612
1613
1614
1615
1616
1617
1618

1619 procedure FindCost(A : CostMatrix; LinkedPath : PathType;
1620 var Cost : real);

1621 { .

1622 This procedure will find the cost of the sh. ~at il
1623 rom the Cost Matrix.

1624

[e PP U

16825 var

1626 Current : PathType:

1627 i, j : integer;

1628

1629 begin

1630 Current :=
1631 Cost := 0;
1632

1633 while (Current”.NextT <> nil)

1634 do begin

1635 i := Currsnt~.Data;

1636 3 := Current”.Next”.Data;

1637 Cost := Cost + A(i,Jl:

1638 Current := Current”~.Next;

1639 end;

1640 end;

1641

1642

1643

1644

1645

1646

1647 ‘

1648 orocedura CalculateCostAndPath(var A : CostMatrix;

LinkedPath:

1649 var P : PathMatrix;
1630 n : integern);

98

_ 1631
1652
1653
1654

— 1633
1656
1657
1658
1639
1680
1661

T 1682
1663
1664

— 16865
1666
1667

1668
1669
1870
1671

— 1672
1873
1674

— 1675

" 676
1877
1678
1679
1680
1681

— 1682
1883
1684

— 1685
1686
1687
1688

~ 1689
16390
16391

— 1692
1693
1634
1635
1696
16397
16398

— 1699
1700

This procedure will calculate the Cost Matrix and the
Matrix by the Floyd Algorithm.

A : Cost Matrix
P : Path Matrix

Path

var
order : integer;
i, j : integer;
value : real;

begin
order
repeat
for i := 1 to n do
for j := 1 to n do
1f ((1 <> order) and (j <> order))
then begin
value := A[i,order] + Afozd .+ 4]:
if (Ali,3j] > walue)
then begin
A{i,J] := wvalue;
P[i,3] := crder:;
end;

1;

end;
order := order + 1;
until not (order <= n)
end:;

begin {

Procedure SearchVGraph

rewrite (PATH) ;

InitializePath(P?,LinkesdPath,n);
CalculateCostAndPath(A,P,n);
FindPath (P, LinkedPath);

FindCost (A,LinkedPath,Cost);
PrintCostAndPath(A,LinkedPath,Cost);

end: {

Of procedure SearchVGraph }

99
OGN, . T

OF FGO% Qe o

——

-701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714

beg

end.

in |

Main

BuildvVGraph (A, List);

SearchVGraph (A,

e

of Main

—_—)
BuildGSpaceObstacles(List);

LinkedPath);

—_)

100

Appendix B: I/O FIELS

[OBSTACLES]

for the VGraph Algorithm

.0000
.Q0Q0Q
.Q000
.000Q

.5000
.0000
.0000
.5000

.0000
.000¢
.0000
.QQ0G0

101

18.
18.
10.
10.

13.
13.
.0000
.00a0

w0

WL~

0QaQa
oefels;
0QQQ
0000

0QagQ
0000

.5000
.500¢
.0000
.0000

[GSPACE]

~S WO 00 MK

~N oW N -

.0000
.0000
.5000
.5000
.0000
.0000

.0000
.Q000
.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000
.0000

.000¢0
.Q000
.5000
.5000
.000¢
.0000

18

13
13

18
18
13
13

= N ~J 00 W ~

- N~ 00 W

.Q00Q0
18.

0000a

.Q000
Nejeele
.3000
.5000

.0000
.0000
.0000
.0000
.5000
.5000

.0000
.0000
.00400
.0000
.Qoa0o
.0000

.0000
.00a00
.Q000
.Q000
.0000Q
.0000

- [VERTICES]

Al 1, 2] = 0.0000
Al 1, 7] = 1.1180
Al 1, 8] = 2.06186
Al 1,16] = 4.1231
Al 1,21) = 4.4721
Al 1,22] = 3.1623
Al 1,23] = 5.0990
Al 1,26] = 6.3246
af 2, 1] = 0.0000
- Al 2, 7] = 1.1180
Al 2, 8] = 2.06186
Al 2,16] = 4.1231
Al 2,21] = 4.4721
Al 2,22] = 3.1623
Al 2,25] = 5.0990
Al 2,26] = 6.3246
Al 3, 4] = 1.00G0
A{ 3, 9] = 8.00040
- Al 3,10] = 8.0000
Al 3,21] = 9.0000
Al 3,22] = 10.049%9%
Al 4, 3] = 1.0000
Al 4, 9] = 7.0000
Al 4,10] = 7.0000
Al 4,211 = 9.0554
Al 4,22] = 10.0000
Al 6, 9] = 5.0249
Al 6,10] = 5.0249
Al 6,11] = §.50040
Al 6,12] = 9.5000
A[6,16] = 5.0249
Al 6,17] = 10.7353
Al 6,27] = 4.031:
Al 6,28] = 4.0311
_ A(7, 11 = 1.1180
Al 7, 21 = 1.1180
Al 7, 8] = 1.0000
Al 7,13] = 10.00Q0Q
aAa(7,16] = 3.0414
a(7,17] = 13.0096
Al 7,21] = 5.2202
Al 7,221 = 4.0311
A(7,231 = 2.5485
102

OF Ut Qu.

a(7,25}
Al 7,26}

Al 8, 2]
Al 8, T
Al 8,13]
A 8,16]
A(8,17]
A 8,19]
8,21]
8,22]
8,23]
8,25]
8,26]

PP W

9, 3l
9, 4]
g, 6]
9,10]
9,11]
9,12}
9,16]
9,271
9,28]

TR R R R

alio, 31
A(10, 4]
A(i0, 6]
A[l0, 9]
afic,11]
a(10,12]
Af10,16]
A(10,27]
A(10,28]

Af11, 6]
a(ii, 91
A(l1,10]
Al11,12)
a(li,17]
A(11,18]
a(ii,27]
A{lL,28]

a(12, 6l
a1z, 9l
a(12,10]
afiz,11]
Af12,17]
a[12,18]
a(i2,27]
A[12,28]

WMo N won onou

oW onoNnu uon YRR T O L | w ou u

uuuununu

104

o n

e
GUNHUMAONNWYFN

.5000
.5765

.0616
.0000
.0000
.0616
.0104
.5475
.1847
.0249
.5811
.5902
.5000

.0000
.0000
.0249
.0000
.1803
.1803
.Q0Qg0
.0000
.0000

.000Q0
.0000
.0249
.0000
.1803
.1803
.0000
.00a0o0
.00a0

.5000
.1803
.1803
.0000
.0000
.0000
.3246
.3246

.5000
.1803
.1803
.000¢
.0000
.0004Q
.3246
.3246

All3, 7}
All3,17]
A(l3,19]
A[13,23]

Alls,
A(ls,
Al(ls,
Alls,
Afls, 10
Alls, 11
A[ls,13
Alls, 17
Alle,22]
A(l6,23]

0 -Jo N

)
]
]
]
]
]
]
]

All7, 6]
Al17, 7
A(17,11]
A{l17,12]
A(17,13]
A(17,18]
A(l7,19]
A[17,23]

Af18,11]
A[l8,12]
A[l18,13]
A[18,17)]
A(18,19]
A[18,20]

A19,13]
A(l19,17]
A[19,18]
A(19,20]
A[(19,25]

A[20,13]
A(20,17]
A[20,18]
A(20,19]
A(20,29]
A[20,26]

Af21, 1}
A[21, 3]
Af21, 4]
Al21, 7}
A[21,22]
Af21,23]
A[21,25]
A[21,26]

o uu

[L | I N [T R TR TR)

L S | T B T I T 1|

L | R T | B TR 1]

Hw u o

[R ' R T 1]

105

10.000¢C
3.0414
5.5000
7.5166

4.1231
5.0249
3.0414
2.061¢
10.0000
11.1803
7.0178
10.0000
7.0000
0.5000

10.7355
13.0096
5.0000
5.0000
3.0414
1.0000
6.7082
10.5000

6.0000
6.0000
3.0414
1.0000
5.8310
6.7082

5.5000
6.7082
5.8310
1.0000
10.0000

6.5000
7.6158
6.7082
1.0000
.10.049%9
9.0000

4.472:
9.0000
9.0554
5.2202
1.4142
7.5664
8.6023
10.0000

CRICE D
OF PCi Que oy

a2, 2}
A (22, 4]
a(22, 7]
a(22, 8]
a(22,13]
A(22,16]
a(22,17]
A(22,21]
A[22,23]
A[22,25]
A[22,26]

A[23, 2]
af23, 71
A[23, 8]
af23,10]
A[23,13]
A(23,16]
A[23,17]
A([23,21]
A[23,22]

A[25, 1]
A(25, 2]
A[25, 7]
A (25, 8]
a(2s,1¢9]
A[25,21]
A (25,22]
A[25,286]

a(26, 2]
A(26, 81
A[26,19]
A[26,20]
A [26,22]
A[(26,25]

A{27, 6]
A(27, %]
A(27,10]
A(27,11]
A(27,12]
A[27,28]

A28, 6]
A28, 9]
a[28,10]
a(28,11]
A(28,12]
A[28,27]

T R L L

W ouou un

106

3.1623
3.1623
10.0000
4.0311
5.0249
14.0088%
7.0000
17.0000
1.4142
6.5000
7.2111
8.6023

3.6401
2.5495
1.5811
10.0125
7.5166
0.5000
10.5000
7.5664
6.5000

5.0990
5.0990
5.5000
5.5902
10.0000
8.6023
7.2111
1.4142

6.3246
6.5000
9.0554
9.0000
8.6023
1.4142

4.0311
5.0000
5.0000
6.3246
6.324¢
0.0000

4.0311
5.0000
5.0000
6.3246
6.3246
0.0000

[PATH]

The shortest path is calculated by the Graph Se

arch Algorithm.

Start Node = 1 Goal Node = 27
Path represented Py internal nodes = 1 16) 27
From To Cost Retation
START in 0° Sliced ~=—-a__ > A3 in 90" sliced 4.123 <90°>
A3 in 90° sliced =—-———e-_ > Bl in 90° sliced 5.025 <0
Bl in 90" sliced =—=—=———q > GOAL in 0° sliced 4.031 <=90">
The Total Cost = 13.179

107

Appendix C: Simulation of the Rotational GSpaﬁe

pregram BuildGrownSpaceObstaclesWithRotation (OBSTACLES, ROTATION) ;
{

1
2
3
4 Author : €. H. Chung
5

6 Version : 3.5

-

8 Date : November 17, 1988

9
10
11
12 BuildGSpaceWithRotation;
13

14 To build the Grown Space Obstacles with Zotation
15 . INPUT FILE : OBSTACLES

16 . OUTPUT FILE : ROTATION
17

18

19 This program will build the Grown Space Obstacles.

20

21 type -
22 Point2D = record

23 X, y : real;
24 end;

25 Vertice2D = ~Node2D;

26 Node2D = record

27 Node : Point2D;
28 Next : Vertice2D
29 end;

30 var

31 OBSTACLES, ROTATION : text;

37 procedure BuildGSpaceWithRetation;
38 {

40 Author : C. H. Chung
42 Version : 2.3 —

44 Date : December 3, 1988

48 BuildGSpaceWithRotation;
S0 . To build the Grown Space Obstacles with rotation

108 -

INPUT FILE
QUTPUT FILE

CEBSTACLES
RCTATICN

This program will build the Grown Space Obstacles.

hh : the horizontal length of the object

vv : the vertical length of the object

rz : the sliced angle for rzotaticnal Grown Scace Obstacles.
const o
Pi = 3.141592; {Radian}
var

Chject : V

ObjectA, ObjectB, 0ObjectC

hh, vv, rz

procedurs Print2Dvertice (L
{

erticelD;

real;

p--

-
-

Vertice2D;

Ver<wice2D) ;

This prcce
shortast p

durs will
ath.

‘0

rint the Linked List of the

begin
if List =

then writeln (ROTATION)

else be

en
end;

{

nil

sin

writeln (ROTA

d

CN,

procedure CreateQkbject(var Objec:

List" .Node.x
List”.Neode.y :10:4);
Print2Dvertice(List”.Next)

Vertice2D):

This procecdure crs2atsas the object from the

by the lin

ked list.

input file

var
Current

Verticel2D:

;‘Rk:."’s:‘ W ‘

0F PGl . iy

Y

begin
Object
if not
the

end;

procedure

(

:= nil;

eof (OBSTACLES)
n begin
- new (Object)

readln (QBSTACLZS, Cbject”.Nede.x,

Object” .Node.y):

Object~.Next := nil;
Current := Object;
while not eof (OBSTACLES)

do begin

new {Current”~ .Nexz) ;
Current := Current”.Next;
readln (CBSTACLES, Current”.Noau....

Current”.Node.y) ;

Current~.Next := nil

end
end

GrownObject (var
hh,

Object, Grown : VerticelD;
vv, rr : real);

This procedure builds

0 < g

Pi/2

< Pi/2

al = (Alx,Aly) +
a2z = (Alx,Aly)
a3 = (A2x,A2y)
a4 = (A2x,A2y) +
asS = (A3x,A3y) +
a6 = (a5Sx,ady) +
a8 = (Adx,Ady) +
a7 = (a8x,a8y) +
< g < Pi

g = q - Pi/2
temp = h (to
h = v

the Grown Space Obstacles.

where h : horizontal length
v : vertical length

nh(-cos(q),-sin(q))

v(sin(g) ,~cos{q))
v(sin(qg),-cos(q))
h(-cos(q),-sin(g))
h({-cos(q),-sin(qg))
v(sin(qg) ,-cos{q))

swap h and v)

110

151 v = temp

-

152

153 q =20

154 Delete a2, a4, aé, a8g.

155

156 q = Pi/2

157 Swap h and v.

158 Delete a2, a4, a6, as.

159 ' }
16Q var)

1861 Current, Head : Verwice2n;

162 begin

163 Current := nil;

164 new (Current) ;

165 Current”.Node.x := Object~.Node.x - hh * caos(rx);
168 Current”.Node.y := Object~.Node.y - hh = sin(rzr);
167 Current”~.Next := nil;

168 ‘

169 Head := Objecrt;

170 Grown := Current;

171

172 new (Current” .Next);

173 Current := Current~.Nex=%;

174 Current”.Node.x := Object”.Node.x;

175 Current”.Nede.y := Object~.Node.y;

176 Current”~.Next := nil;

177 _

178 Object := Object~.Next;

179 new (Current~.Next) ;

180 Current := Current”.Next;

181 Current”.Node.x := Object”~.Node.x:

182 Current”.Nede.y := Cbject”.Node.y;

183 Current~.Next := nil;

184

185 new (Currsnt~ . Nexz);

186 Curzent := Current”.Next;

187 Current”.Node.x := Objec=~.Node.x + vv * sin(zr=);
188 Current”.Ncde.y := Object~.Ncde.y - vv = cos(rz) ;
189 - Current”~.Next := nil;

130

1391 Cbject := Object~.Next;

192 new (Current”~.Next) ;

193 Current := Current~.Next;

194 Current”.Node.x := Objecz~.Node.x + vv * sin(rr);
1385 Current~.Node.y := Cbject”.Node.y - vv = cos(rr);
196 Current~.Next := nil;

1397

198 new (Currant” .Next);

189 Current := Current~.Nex:;

200 Curzent”.Nocde.x := Objec=~.Node.x + wv = sin(zz) - hh * cos(r

Il
ORIGES .~ e o

OF pPGan Garemy

[l

201 Current~.Node.y := Object”.Nede.y - vv ~ cos{(rr) - hh =

sin(r: ;
202 Current”.Next := nil; -
203
204 Cbject := QObject”.Next;
205 new (Current” .Next); -
206 Current := Current”.Next;
207 current~.Node.x := Object~.Node.x + vv * sin(zrr) - hh * cos(r:
208 Current~.Node.y := Object”~.Nede.y - vv * cos(rr) - hh * sin(ri.;
209 Current”~.Next := nil;
210
211 new (Current”~ .Next);
212 Current := Curzent”.Next; -
213 Current”~.Node.x := Object”.Node.x - hh ~ cos(rz) -
214 : Cur—ent”.Node.y := Object”.Node.y - hh * sin(rz),
215 Current~.Next := nil; -
216
217 Object := Head;
218
219 if (rr = 0) or (abs(rr - Pi/2) < 0.001) -
220 then begin
221 Current := nil;
222 new (Current); -
223 Current~.Ncde := Grown”.Node;
224 Current~.Next := nil;
225 -
226 - Head := nil;
227 Head := Current;
228 while Grown~.Next~.Next <> nil
229 do begin -
230 new (Current” .Next);
231 Current := Current”.Next;
232 Grown := Grown”.Next~.Next; —_
233 Cur-asnt”~.Node := Grown”.Node:
234 Current”~.Next := nil;
235 end;
236 Grown := Head; -
237 end;
238 end;
239 —
240
241
242 .
243
244
245 procedure RotationObjects (Cbjecta, ObjectB, CbjectC : VerticelD;
246 rr, hh, vv : real)’ —
247 { :
248 This procedure will print the GSpace Obstacle with Rotacion.
249 } -

250 var

112

251 GrowndA, GrownRB, GrownC : Vertice2D;

252 i : integer;

233 Angle : real;

254 begin

255 i := 0;

258 Angle := rzr * i;

257

258 while (Angle >= 0) and (Angle < Pi) do

259 begin

260 writeln(ROTATION, Angle*180/Pi :3:1, '’ Rctation'):;

261 if Angle = @

262 then begin

263 GrownCbject (Cbjectd, Growna, hh, vv, Angle);
264 GrownObject (Object3, Grown3, hh, Vv, Angle);

265 GrownObject (ObjectC, GrownC, hh, vv, Angle);

268 Print2Dvertice (GrownA) ;

267 Print2Dvertice (Grown3B) ;

263 Print2Dvertice (GrownC) ;

269 end;

270 if (Angle > 0) and (Angle < Pi/2)

271 then begin

272 GrownObject (Objecta, Growna, hbh, - - _

273 ~ GrownObject (Object3, Growns, hn, vv, angie: -

274 GrownQObject (ObjectC, GrownC, hh, vv, Angle);

275 Print2Dvertice (GrownA) ;

276 Print2Dvertice (GrownB) ;

277 Print2Dvertice (GrownC) ;

278 end;

279 if abs(Angle - Pi/2) < 0.001 { because of Round Off }

280 then begin

281 GrownObject(Objec:A,GrownA,vv,hh,Angle-Pi/Z);
282 GrownObject(Objec:S,G:owns,vv,hh,Angle—Pi/Z);
283 GrownObject(Objectc,GrownC,vv,hh,Angle-?i/2);
284 Print2Dvertice (GrownAa) ;

285 Print2Dvertice (Grown3s) ;

2886 Print2Dvertice (GrownC) ;

287 end

288 else if (Angle > Pi/2)

289 then begin

290 GrownObject(ObjectA,GrawnA,vv,hh,Angle-?i/Z);
291 GrownObjec:(ObjectB,GrownB,vv,hh,Angle—Pi/Z);
292 GrownObjec:(ObjectC,GrownC,vv,hh,Angle—Pi/Z);
293 Print2Dvertice (Growna) ;

294 Print2Dvertice (Graowns) ;

295 Print2Dvertice (GrownC) ;

296 end;

2397 i = i+ 1;

298 Angle := rr = i;

299 end;

300 end;

301

302

303

304

305

308 procedura Partition(var Object, ObjectA, Cbjects,
307 ObjectC : Vertice2D);
308 {

309 This procedure will partition the whole Object into
310 3 objects.

311

312 var

313 i : integer;

314 Curresnt, Currentd, Current3, Currentl : VerticelD:
315 begin

316 : Current := Obiject;

317

318 ObjectA := nil;

319 new (Objectl);

320 ObjectA~.Node := Current”.Node;

321 ObjectA”.Next := nil;

322 CurrentA := ObjectA;

323 for i := 1 to 3 do

324 begin

325 new {CurrentA” .Next) ;

326 Current := Current”.Next;

327 CurrentiA := CurrentA”.Next;

328 CurrentA~.Node := Current~.Ncde;
329 CurrentiA~ .Next := nil;

330 end;

331

332 Current := Current”.NexZ;

333

334 Objectd := nil;

335 new {Objec<t3) ;

336 ObjectB~.Node := Current”.Node;

337 ObjectB~.Next := nil;

338 CurrentB := CbjectB;

339 for i := 1 to 3 do

349 begin

341 new (CurrentB~ .Next) ;

342 Current := Current”.Next;

343 CurrentB := Current3”.Next;

344 CurrentB8~.Node := Current~”.Node;
345 CurrentB~.Next := nil;

3486 end;

347

348 Current := Current”.Next;

349

350 ObjeceC := nil;

351 new (CojectC);

352 ObjeczC".Node := Current~.Node;

3583 ObjectC~.Next := nil;

354 CurrentC := Objec:=C;

35S for 1 7= 1 to 3 do

3545 tegin

357 new (CurzentC~.Next) ;

358 Current := Current”~.Next;

353 CurrentC := CurrentC~.Next;

3640 CurrentC~.Node := Current~.Node:;

361 CuzrentC~.Next := nil;

362 end;

363 end; { of procedure Partition)

364

365

366

367

368 begin { BuildGSpaceWithRotation }
365 reset (OBSTACLES) ;

370 rewrita (ROTATION) ;

371

372 rr := Pi / 6;

373 hh := 2;

374 vv 1= 1;

373

376 CreateCbjecz(Object) ; '
377 Partition(Object, ObjectA, Objects, ObjectC);
378 RotaticnObjects(ObjectA, Objects, ObjectC, rr, hh, vv);
379

380 end; { of Procedure 3uildGSpaceWithRotation }
381

382

382

384

385

386 begin (Main }

387

388 BuildGSpaceWithRotation;

389

390 end. (. Of Main ___}

Appendix D: I/O FILES for the Rotational GSpace

[OBSTACLES]

3.0000 18.0000
9.0000 18.0000
9.0000 10.0000
3.0000 10.0000

10.5000 13.0000
19.0000 13.0000

19.0000 9.0000
10.5000 9.0000
8.0000 7.5000
16.0000 7.5000
16.0000 3.0000
8.0000 3.00Q00
[(ROTATION]
0.0° Rotation
1.0000 18.0000
9.0000 18.0000
9.00400 9.0000
1.0000 9.0000
8.5000 13.0000
19.00040 13.0000
19.0000 8.0000
8.5000 8.0000
6.0000 7.5000
16.0000 7.5000
16.0000 2.0000
6.0000 2.0000
30.0° Rotation
1.2679 17.0000
3.0000 18.0000
9.0000 18.0000
9.5000 17.1340
9.5000 9.1340
7.7679 8.1340
1.7679 8.1340
1.2679 9.0000

116

60.

19
19

19.

18

10.

16

ls.
ls.
15.

NNV WwND O

.7678% 12
.5000 13
.0Q000 13
.5000 12
.5000 8
.7679 7
.2679 7
.7679 8
.2679 6
.0000 7
.0000 7
.5000 6
.5040¢0 2
.7679 1
.7679 1
.2879 2

Rotation
.0Q0Q0 16
.Q0000 18
.0000 18
.8660 17
.866¢ S
.8660 7
.8680 7
.0000 8
.5000 11
.5000 13
.000¢ 13
.8660Q 12
8660 8
.8680 6
3680 6
.5000 7
.0000 S
.Q000 7
.0000 7
8660 7
B66Q 2
8660 0
.8860 0
.0000 1

.00ao0
.0000
.0000
1340
.1340
-1340
.1340
.0000

.5000
.5000
.5000
-6340
.1340
.1340
.1340
.Q000

.2679
.Q000
.0000
.5000
.5Q00
.7679
. 7679
.2679

.2679
.0000
.0000
.50a0
.5000
.7679
.7679
.2679

.7679
.5000
.5000
.0000Q
.5000
.7679
.7679
.2679

9Q.

10.
19.
20.
20
19.
10.

9.

Rotation
.QQ00 18
.0000 18.
.0000 18
.0000Q 16
.0000 8
.0000 8
.0000 8
.0000 10
.5000 13
.5000 13
.00aa 13
.Q000 11
.0000 7
.Q000 7
.5Q000 7
.5000 S
.0000 7
.Q000 7
.0000 7
.0000 S
.Q000 1
.0000 1
.0000 1
.0004Q 3

Rotation
.1340 17
.gqgaa¢ 18
.Q000 18
.0Q00 16
.00a00 8
.1340 7
.1340 7
.1340
.6340 12

50Q0 13

0QaQo0 13

gQao i1
.0000 7

13490 6

6340 6

6340 8

.0000

goaQo

.0000
.0000
.00040
.Q000
.0000
.0000

.0000
.0000
.0000
.0000
.GoQo0
.0000
.0000
.0000Q

.5000
.5000
.5000
.5000
.0000
.0000
.Q000
.0000

.5000
.0000
.0000
.2679
.2679
.7679
.7679
9.

5000

.5000
.0000
.0000
.2679
.2679
L7679
.7679
.5000

118

150.

7.13490 7
8.0000 7
16.0000 7
17.0000)
17.0000 1
16.1340 o]
8.1340 0
7.1340 2
0° Rotation
2.5000 17.
3.0000¢0 18
9.0000 18
10.7321 17
10.7321
10.2321 8
4.2321
2.504Q¢
10.0800 12.
10.5000 13.
19.0000 13
20.7321 12
20.7321 8
20.2321 7
11.73212 7
10.0000 8
7.5000 8
8.000Q0 7
16.0000 7
17.7321 6
17.7321 2
17.2321 1
9.2321 1
7.5000 2

.0Qa0c
.500¢
.5000
.76759
.26879
.7679
.7679
.5000

1340

.0000
.0000
.0000
S.

00cQo

.1340
8.
9.

1340
1340

1340
QQaQo

.0000
.0000
.0000
.1340
.1340
.1340

.6340
.5000
.500¢
.5Q20¢
.Q000
.1340
.1340
.1340

119

Appendix E: Simulation of the Branch and Bound Algorithm

program BranchAndBoundAlgorithm(BBinput,BBoutput);

{

Author : C. H. Chung
Version : 2.0
ate : November 1, 1988
NodeSet = (5] U ([N1,N2,N3 ...] U [G] searched by the VGrzph.

This NodeSet is implemented by linked list, which node has

the record structure to represent the vertices.
Input file comes from BBinput.

Output file is BBoutput.

type

PointType = recocrd

X, ¥, 2 : real
end;

NodeType = ~“Nodes:;
Nodes = record
Node : PointType;
Next : NodeType
end;

var

BBinput, BBoutput : text;
NcdeSe=, MinSet : NodeTvpe;

procedure PrintNodes (NodeSet : NodeType):
{

NodeSet = (S] U [N1,N2,N3 ...] U [G] searched by the VGraph.

This Procedure will print the NodeSet.

begin
if NodeSet = nil
then
else begin
writeln (BBoutput, NcdeSet~.Node.x :10:4,

120

S1 NodeSet~.Ncde.y :10:4,
s2 NodeSet”.Node.z :10:4):;
53 writeln (BBoutput);

S4 . PrintNodes (NodeSet~.Nex+t)

g5 end

56 end;

57

88

59

60

61

62

63 func<tion EuclideanDistance (NodeSet - NcdeType) : real;
64 {

65 NodeSet = (S] U [N1,N2,N3 ...] U [G] searched bv the VGraph.
68 This Function will calculate the Euclidean Distance

687 between the points in 3D.
68

}
63 var :

70 Current : NodeType;

71 dl, d2, d3 : real;

72 x1, vy, 21,

73 x2, y2, 22 : rsal;

74 begin

75 Current := NodeSet;

76 x1 Current~.Node.x;

- —

77 vyl := Current~.Node.y;

78 2l := Current~.Node.z;

79)

80 Current := Current~. Nex<;

81 x2 := Current”~.Node.x:

82 y2 := Curzent”.Node.y;

83 22 := Curzent~.Ncde.z;

84

85 dl := (x2 - x1) = (x2 - x1);

36 d2 := (y2 - yl) = (y2 - yl);

87 d3 := (22 - z1) * (22 - 21);

88

89 EuclideanDistance ;= sgrt(dl + d2 + d3)
S0 end;

91

52

83

9S4

9s

96

87 function LengthCfNodeSet (NodeSet - NodeType) : integer;
cg {

99 NodeSez = (s U (N1,N2,N3 ...] U (G] searched by the VGra....

100 This Function will find the length of NodeSer.

101
102
103
104
108
108
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
122
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

7
begin
if (NodeSet~.Next = nil)

then LengthOfNodeSet := 1 -
elsa LengthOfNodeSet := 1 + LengthOIiNodeSet (Nodef.: " wai
end;
function Distance(NodeSét : NodeType) : real; -

{

NodeSet = {S] U ([N1,N2,N3 ...] U ([G] searched by the VGraph.
of NodeSet for Distance >= 2

Function EuclideanDistance will find the Euclidean Distance
between the fist node and the seccond in NodeSet

var -
Current : NodeType;

begin
Curzent := NodeSet:;
if (LengthQfNodeSet (Current) <= 2)

then Distance := EuclideanDistance(Current)
else Distance := EuclideanDistance (Current)
+ Distance (Current” .Next) h

end;

procedure Copv(var NodeSet : NodeType; var MinSet : NodeType); -
{

NodeSet = (S] U [N1,N2,N3 ...] U [G] searched by the VGraph.
This Procedure will duplicate the NodeSet in the other memory —
storage.
)
var

NodeHolder, Current : NodeType;

begin
MinSet := ni
NodeHglder

.
’

NodeSet;

(LI ot

new(MinsSet);
MinSet~ .Node
MinSet” .Next

NodeSet~ .Nade;
nil;

122

151 Current :s MinSet;

152

153 while (NodeSet~.Next <> nil)

154 dec begin

183 new (Current” .Nex%);

156 Current := Current~.Next;

157 NodeSet := NodeSet”.Nex:;

153 Current”.Node := NodeSet~.Node;

153 Curzent” .Next := nil;

160 and;

161 NodeSez := NodeHclder:;

162 end;

163

164

165

1686

167

168 precedure BranchAnd3ound (var NodeSet : NodeType;
163 var MinSet : NodeType);
170 {

171 NodeSet = (S] U (N1,N2,N3 ...] U (G] searched by the VGraph.
172 This Procedure will find the the compensated nodes by
173 Branch and Bound Merhod.
174

175

176 var

177 N1, N2, N2holder,

178 Increament, MinDistance : real;

179 Head: NodeType;

184

181 begin

182 Increamenc := 0.01;

183 Head := NcdeSet;

184 Copy (NodaSez,MinSetr) ;

185

186 NcdeSet := NodeSet~.Nex=:;

187 N1 := NodeSet~.Node.z:

188 NodeSet := NodeSet~ .Nex=:;

189 N2 := NodeSet~.Node.z:

190 N2holder := N2;

191 NodeSet := Head;

192

193 MinDistance := Distance(NocdeSet):

194

185 while (N1 > 0.0)

196 de begin

197 witile (N2 > 0.0)

198 do begin

199 N2 := N2 - Increament:;

200 Head := NcdeSet;

201 NodeSet := NodeSet”~.Nex<z:

202 NodeSet := NodeSet~.Next:

203 NodeSet”.Node.z := N2Z;

204 ; NodeSet := Head:;

205

206 if (MinDistance > Distance (NodeSet))
2Q7 then begin

208 MinDistance := Distance(Ned~Ts:
209 Copy (NodeSet,MinSet) ;

210 end; '
211 end;

212

213 N2
214

215 N1l N1l - Increament;

216 Head := NodeSet;

217 NodeSet := NodeSet~.Next;

218 NodeSet~ .Node.z := N1;

219 NodeSet := Head;

220 end;

221 end;

222

223

224

225

226

227 :

228 procedure CreateNodes(var NodeSet : NodeType);

229 {

230 NodeSet = (S] U (N1,N2,N3 ...] U [G] searched by the VGrapnh.
231 This Procedures will create the NodeSet.
232

233 var

234 Current : NodeType:

235 begin

236 NodeSet := nil;

237 if not eof (BBinput)

238 then begin

239 new (NodeSet) ;

240 readln(BBinput, NodeSet~.Node.x,

241 NodeSet” .Node.y,

242 NodeSet” .Node.2z);

243 NcdeSet~.Next := nil;

244 Curzent := NodeSet;

245 while not eof (BBinput)

246 do begin

247 " new (Current” .Next);

248 Current := Current”.Next;

249 readln(BBinput, Current”~.Ncdé.x,
250 Current~.Node.y,

N2holder;

251
252
253
254
255
256
257
258
283
260
261
262
253
254
2653
268
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
28¢
288
287
288

begin {

end.

Current~.Node.z' *
Current~.Next := nil
end
end
end:;

MAIN }
Leset (BBinput);
Tewrite(BBoutput) ;

CreateNodes (NodeSet) ;

writeln(BBoutput) ;

writeln (BBoutput) ;

writeln (BBoutput);

writeln(BBoutput, 'The original vertices by VGraph Algorithm'y) ;
writeln(BBoutput) ;

writeln(BBoutput, ' orginal distance = °

Distance(NodeSet) :7:4);

/

PrintNodes (NodeSet) ;
BranchAndBound(NodeSet,MinSet);
writeln (BBoutput) ;

writeln (BBoutput) ;

writeln (BBoutput);

writeln(BBoutput, 'The vertices compensacted by BranchAndBound') :
writeln(BBoutput, ' '

’
Distance(MinSer) :10:4) :
PrintNcdes (MinSer) ;
writeln (BBoutput);
writela(BBoutput) ;
writeln(3Bocutpuz, ' clock = ', clock
writala(BScutpuz, ' Ssystam = ', sysclc..
{ MAIN)
123 ;

Appendix F: I/O FILES for the Branch and Bound Algorithm

(BBinput]
3 2 4
7 4 10
g8 8 9
4 11 2
(BBoutput]

The original vertices by VGraph Algorithm

orginal distauce = 20.3285
3.0000 2.0000 4.0000

-~

.0000 4.0000 10.0000
8.0Q00 8.0000 9.0000

4.0000 11.0000 2.0000

The vertices compensated by Brauchanuluono
13.74%¢

3.0000 2.0000 4.0000
7.0000 4.0000 3.3400
g§.dQcqaae g8.000¢0 2.7300

4.0000 11.0000 2.00400

clock
system

2301666
10116

nou

,_..
2
[®>]

OWO-dNU & WM

[o

o s
da Ll B

o s
O 0 -~Javn

NN
W+ o

[ASI S TN S I oV)
~l v o

WM
- O W o

) Ly
wN

Wi
[e) U N

1]

oW
O v o -~

[T S S S S -
~I O W LN

(TS
O W o

Appendix G: Simulation of the RCA

pProgram RCAlgoritnm(RCAinput,RCAoutput);
(:

Author : C. H. Chung

Version : 2.0

Dats October 25, 198§

NodeSet = ([S] U [N1,N2,N3 ...] U [G]

Input file comes from RCAinput.

Output file is RCAoutput.

Determine Error to decide the accuracy.
Refer to Appendix C in RAL-TR-88-117.

searched hy b
This NodeSet is implemented by linked list, whicna

the record structure to Iepresent the vertices.

duae las

type
PointType = record
X, ¥, 2 r=al
end;
NodeType = “~Nodes;
Nodes = record
Node PointType:;
Next NodeType
end;
var
RCAinput, RCAcutput taxt;
NodeSex NodeType;
rror real;

procedure PrintNodes (NodeSet

NcdeType) ;
{

NodeSet = [S] U (N1,N2,N3 ...] U (G]
This Procedure will print the NodeSet

Searched by the JGTaT...

begin
1f NodeSet =
then

nil

a~

-

,"}[-::‘..!,,‘.. L. .
AL A AR SN PR

"
<,
bl

OF POIR ijun s

else beglin
writeln (RCAoutput, NcdeSet”.Node.x :10:4,
NodeSet~.Node.y :10:4,
NodeSet~ .Node.z :10:4):
writeln(RCAoutput);
PrintNocdes (NodeSet”.Next)
end
end;
function EuclideanDistance (NodeSet : NodeType) real;
{
NodeSet = [S] U (N1,N2,N3 ...] U (G] searched by the VGraph.

This Function will calculate the

Euclidean Distance
between the points in 3D.

}

var
Current : NodeType’
dl, d2, d3 : real;
xl, yi, 21,
x2, y2, 22 : real;
begin
Current := NodeSet;
x1 := Curzent”.Node.x;
yl := Current”.Node.y;
21 := Current”.Node.z;
Current := Currzent”.Nexz<;
x2 := Current”.Node.X’
y2 := Currant”.Node.y;
22 := Curzent”.Node.z;
dl := (x2 - x1) * (x2 - x1);
d2 := (y2 - yl) = (y2 - yl);
d3 := (22 - z1) * (22 - zl});
EuclideanDistance := sgrtzi(dl = d2 - d3)
end;
procedures Reset(var NodeSet : NodeType);
{
NodeSet = [S] U (N1,N2,N3

Refer to Appendix C in RAL-TR-88-117.

}

S

] U [G] searched by the VGragh.

beg

o
K-S

[l Sl e R Rl S S
[37~ “QEN - S 3§
QOW o~

Current NodeType;
x0, y0, =0,
xl, vi, z21,
x2, y2, 22,

cl, c2, c3, c4,

P, g, &,

dl, d2, edil, ed2

in

Current := NodeSet:

xQ0 := Current~.Node.x:
yQ := Current”.Node.y;
20 := Current~.Node.z:

Currenc :=

x1l := Current”~.Ncde.x;
yl := Current” .Node.y:;
21 := Current” .Node.z;

Current := Current~
x2 := Current*.Node.x:

y2 := Current”.Node.y;
22 := Current”.Node.z;
cl := (x1-x0)*(x1-x0)
c2 := 22-21;
c3 := (x2-x1)*(x2-x1)
c4 = 21-20;

1-c3;

1xc2=c2

if (p = Q)
tien &l := -r / ¢
else begin
dl := (-g + s (@*q - 4*p*r)) /(2=
d2 := (-gq - sq~;(c g - 4*p*r)) /(2=
edl := Sgrt((x1l-x0) * (x1-x0)
*(yl-y0) * (yl-y0)
*(21-20-dl) =~ (21-20-d1))
- TT((x2-x1) * (x2-x1)
+(y2 yl) * (y2-y1)
+(22-21+d1) = (22-21+d1)) ;
ad2 := scrT((x1-x0) * (x1-x0)
+(yl-y0) * (y1-y0)
+*(21-20-d2) * (21-20-d2))
* sgrt((x2-xl) * (x2-x1)
*(y2-yl) * (y2-y1)

real;

*{cl*c2 + c3*c4);
- C3*c4*xc4;

Current” .Next;

.Next;

* (yl-y0) *(y1-y0);
* (y2-yl) *(y2-vy1);

+{(22-21+d2) = (22-21+d2)) ;

129

151
152
153
154
153
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
182
186
187
188
189
190
191
192
193
194
195
196
187
128
19¢°
200

if (edl > ed2)
then d1 := d2

end;
NodeSet~.Next”~.Node.z := 21 - dl
end;
function LengthOfNodeSet (NocdeSet : NodeType) : intuger;
{

NodeSet = (S] U (N1,N2,N3 ...]1 U [G] searcnhed by the VGraph.
This Function will find the length of NodeSet.

}

begin
if (NodeSet~.Next = nil)
then LengthOfNodeSet
else LengthOfNodeSet

1
1 + LengthOfNodeSet (NodeSet”.Next)

end;

procedure Compensate(var NodeSet : NodeType) ;
{

NodeSet = (S] U [N1,N2,N3 ...1 U [(G] searched hy the YGraph

4 of NodeSet for Compensate >= 3.

oraceduraz Reset will taks the first 3 nodes lu. duwcn
replace the second of the 3 nodes in NedesSel
order to get the set of tie compensarad nNoo T

L

begin
if (LengthOchdeSet(NodeSet) = 3)
then Reset (NodeSet)
else begin
Reset (NodeSet);
Ccmpensate(NodeSet“.Nex:)
end
end;
function Distance(NodeSet : NodeType) : real;
{

201 NodeSet = (S] U (N1I,N2,N3 ...] U (G] searched by the vGrapn.

202 # of NodeSet for Distance >= 2

203 Function EuclideanDistance will find the Euclidean Distance
204 between the fist node and the secand in NodeSet.
205 }
2086 var

207 Current : NodeType;

208 begin

209 Current := NodeSet;

210 if (LengthCfNodeSex (Curzent) <= 2)

211 then Distance := Euclideanoistance(Cur:en:)

212 else Distance := EuclideanDistance(Cur:ent)

213 + Distance(Current~.Nex:)

214 end:

2159

216

217

218

219

220

221 Procedure RCA(var NodeSer - NcdeType; Error : real);

222 {

223 NodeSet = (S] U [N1,N2,N3 --.] U [G] searched by the VGrapn.
224 Error = a permissible error

225 Function Distance will calculate the Euclidean Distance

226 through NodeSet.
227 Procedure Compensate will find the compensated nodes and

228 : will return the set of these nodes.
229 '
230 var

231 Pachl, Path2 : razl;

232 regin

233 Pachl := Distance (NcdeSear) ;

234 Compensate (NodeSet) ;

233 Path2 := Distance (NcdeSezn) ;

236 writeln (RCAoutpusz, ' compensavie o

237 L, © ey,
238 PrintNodes (NodeSet) ;

239 if (abs(Pathl - Path2) > Error)

240 then RCA(NodeSet, Errcr)

241 end;

242

243

244

2458

2486

247

248 pProcedure CreataNodes(var NcdeSet NedeType) ;

249 {

230 NodeSet = ([S] U (N1,N2,N3 ...] U (G] searched by the VGrach.

,.,
[4S]

251
252
253
254
285
258
257
258
259
260

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

282
283
284
283
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

This Procedure will create the NodeSet.

var }
Current : NodeType: =
begin
NodeSet := nil;

if not eof (RCAinput)
then begin
new (NodeSet) ;
readln (RCAinput, NodeSet~.Node.Xx,

NodeSet~.Node.y, -
NecdeSet~ .Node.::: -
NodeSet~.Next := nil;
Current := NodeSet; -
while not eof (RCAinput)

do begin

new (Current” .Next);

Current := Current”.Ne=xt;

readln (RCAinput, Current”.Node.x,
Current”.Node.y,
Current~.Node.z2); =

Current”.Next := nil

end
end
end;

tr
M
ul

a { {3IN
2s et(RCAlnn ut) ;
swrite (RCAautput);

Error := 0.00001;
CreateNodes (NodeSet); :

writeln (RCAoutput); -
writeln (RCaoutput);

writeln (RCAoutput};

writeln (RCAcutput, 'The original vertices by VGraph Algorichm'); —
writeln (RCAoutput);

writeln (RCAoutput, ' orginal distance = '

Distance (NodeSet) :7:4);
PrintNodes (NodeSet) ; -

RCA (NodeSet, Error);

writeln(RCAcutput);

writeln (RCAoutput);

writeln (RCAoutput):

writeln (RCAoutput, 'The vertices compensated by RCA');

301
302
303
304
305
306
307

writeln (RCAoutput,
PrintNodes (NodeSet) ;
writeln (RCAoutput) ;
writeln(RCAoutput);
writeln (RCAoutput, '
writeln (RCAoutput, '

end.

{

MAIN

clock =
system =

t

’
4

clock) ;
sysclock) ;

Appendix H: I/O FILES for the RCA

{(RCAinput]

3 2 4
7 4 10
8 8 9
4 11 2
(RCAoutput]

The original vertices by VGraph Algorithm

orginal distance = 20.3283.

3.0000 2.0000 4.0000
~7.0000 4.0000 10.0000
8.0000 . 8.0000 9.0000
4.0000 11.0000 2.0000
- compensated distance = 15.3916
3.0000 2.0000 4.0000
7.0000 4.0000 6.6015
8.00a0 8.0000 4.5219
4.0000 11.0000 2.0000
compensated distancoe - 1.
3.0000 2.0000 - 4.0000
7.0000 4.0000 4.2715
8.0000 8.0000 -3.2449
4.0000 11.0000 2.0000
compensated distance = 12.7524
3.0000 2.0000 4.0000 ‘
7.0000 4.0000 3.6071
8.0000 8§.0000 - 2.8808

4.0000 11.0000 2.0000

compensated distance = 13.742s
3.0000 2.0000 4.0000
&.OOOO 4.0000 3.4177
8.0000 8.0000 2.7770
4.0000 11.0000 2.0000
compensated distance = 13.7415
3.0000 2.0000 4.0000
7.0000 4.0000 3.3637
8.0000 8.0000 2.7474
4.0000 11.0000 2.0000
compensated distance = 13.7415
3.0000 2.0000 4.0000
7.0000 4.0000 3.3482
8.0000 8.0000 2.7389
4.0000 11.0000 2.0000
compensated distance = 13.74156
3.0000 2.0000 4.0000
7.0000 4.0000 3.3439
8.0000 8.0000 2.7363
4.0000 11.0000 2.0000
123 :

Cli=

T S Y S
R TR A T

3000 QU

"The vertices

compensataed by RCA

3.0000 2.0000 4.0000
7.0000 4.0000 3.3439
§.0000 8.0000 2.7365
4.0000 11.0000 2.0000
clock = 400
system = 83

136

.—‘
O W -~ Lo b))

—d

-

-
N

(s
b L

b4 s
WO W~ oy

NN
N - O

NN
~t oW e)

G Wt W N D
NeawhNDhFEr O Yo

[R W N
W -~

40
41
42
43
44
45
46
47
48
49
3a

Appendix I: Simulation of the OPM

program OrthogcnalProjectionMethod (OBJECT, PROJEC

{

TION) ;

Author : C. H. Chung
Version : 2.3

Date : December 3, 1988

opM;

- To build the Grown Space. Obstacles in 3D

. INPUT FILE : OBJECT
OUTPUT FILE : PROJECTION

by OPM

This program will build the Grown Space Obstacles in 3D.

type :
Point2D = record
X, ¥y : real;
end;
Vertice2D = “~Ncde2D;
Node2D = racord
Node : Point2D;
Next : Vertice2Dd
end;

Point3D = recorid
X, ¥V, 2
end;
Verticel3dD = ~NodelD;
Node3D = record
Node : Point3D;
NexZ : Vertice3D
end;

n
w
Y
-

var
OBJECT, PROC

ECTION : tex=;
LinkedvVer es

Verticel3Dn;

procedure 0OPM(var LinkeadVertices

{

VarticaliD);

Authicr : C. H. Chung

iy -
137

BRE DI T
L Wi I

OF POO® QUALTY

'..'7
.
i
L)

51 -
52 Version : 2.3

53

54 Date - : December 3, 1988 -
55
58
57
58 QOPM(LinkedVertices);

59

60 . To build the Grown Space Obstacles in 3D by OPM.
6l . INPUT FILE : OBJECT =
62 . QUT®SUT FILE : PROJECTION

64

65 This program will build the Grown Space Obstacles.
66

67 hh : the horizontal length of the object

69 vv : the vertical length of the object
70

71 rr : the sliced angle for rotational Grown 3pace Vbstacles.
72 }

73 const

74 Pi = 3.141592; {(Radian} —
75 var

76 Object : VerticelD;

77 ObjectXY, Object¥Z, ObjectXZ : Vertice2D;

78 GrownXY, Grown¥Z, GrownXZ : Vertice2D; -
79 rr : real;

80 hhl, hh2, hh3,

81 vvl, vv2, vv3 T
82

83

84

M
v
..—l

86

87

88

89 procedurs Print2Dvertice(List : Vertice2D);

90 {

91 : This procedurs will print the Linked List of the
52 shortest path.

93

5S4 begin

95 if List = nil -
96 then writeln (PROJECTION)

87 else begin

g8 writeln (PROJECTION, List~.Node.x :10:4,
ag Listc~.Nocde.y :10:4);
100 Print2Dvertice (List”.Next)

101
102
103
104
108
106
107
108
109
110
111
112
113
11

115
116
117
118
119
120
121
122
123
124
125
12¢
127
123
129
130

131

-

132

133

134
135
136
137
138
139
140
141
142
143
144
145
1456
147
148
145
150

end
end.;

procedure Print3Dver<ice(Lis= - Vertice3D);
{

This procedurs will Erinc tie Linked List of tha
shortest path.

begin
if List = nil
then writeln (PROJECTION)
else begin
writeln (PROJECTION, List~.Ncde.x : ‘s
List~.Node.y :10:4
List~.Node.z
Print3Dvertice(List*.Next)
end
end;

Procedure CrsateCbject(var Object : Verticel3D);
{

This procecdurs creatss tne otject from the input £file
by the linked list.

var
Current : VerticelD;
begin
Object := nil;
1f not ecf (OBJSECT)
then begin
new (Cbject) ;
readln (OBJECT, Object~.Ncce.x,
Object~.Ncce.y,
' Objectz~.Node.z) ;
Object”~.Next := nil;
Curzrent := Object;
while not eof (OBJECT)
do begin
new (Currantc~.Nexz) ;

151
152
133
154
153
158
157
158
159
180
161l
162
163
164
163
166
167
168
165
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
1390
191
192
193
194
195
196
197
198
199
200

Current := Current”.Next;

rsadln(OBJECT, Current”.Node.x,
Current”.Node.y,

Current” .Node.2);

Currer

>

£~ .Next := nil

end
end;

procedures GrownObject(var Object, Grown : VerticelD;
hh, vv, rr : real);

L a
§t

{ e —
This procedure builds the Grown Space Obstacles.
wheras h : horizontaz
v : vertical
0 < g ¢ Pi/2
al = (Alx,Aly) + h(-cos(q),-sin(q))
a2 = (Alx,Aly)
a3 = (A2x,A2y)
a4 = (A2%x,A2y) + v(sin(g),-cos(qQ}))
§ = (A3x,A3v) + v(sin(g),-cos(q))
aé = (asSx,aSy) + h(-ces(g),-sin(qQ))
a8 = (A4x,ady) + h(-ces{(q) ,-sinl(g))
a7 = (a8x,a8y) + v(sin(qg),-cos(q))
Pi/2 < g ¢ Pi
g =q - Pi/2
temp = h (to swap h and v)
h = v
v = tamp
g =0
Deleta a2, a4, a6, asd.
g = Pi/2
Swap h and v.
Delete a2, a4, a6, as.
var

Currant, Head : VerticelD;

201
202
203
204
205
208
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
238
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

begin

Current := nil;
new (Currxent);

Current”~ .Node.x
Current~.Node.y

Current”~.Next := nil;

oo

Head := Objec=z;
Grown := Current;

new (Currsnt”™ .Nex=z) ;

Current := Currant~.Nex=t;
Currentc”
Currant”
Current”

.Nede.y := Cbject”.Node
.Next := nil;

Object := Object”.Next;
new {Current”.Next);
Current := Current”.Next;
Current”.Node.x := QObject®
Current”.Node.y := Object”~.Node
Current~.Next := nil;

new (Current”® .Nex<t);

Current := Current~.Next;
Current”.Node.x := Qbject~.Node
Current”.Neode.y := Object”~.Node
Current~.Nex= := nil;

Object := Object”.Next;

new (Currsnt” .Nexzt);

Current := Current”~.Nex=z;
Curresnc”~.Node.x Object”.Node.
Current~.Ncde.y Objec=~ .Ncde.
Curresnt~.Nexz := nil;

Dzlu

new (Current” .Next) ;
Current := Current”
Current”~.Node.x := Objecz".Ncde.
Current”.Neode.y := Objecz”.Node.
Current~.Nexz := nil;

.Next;

Object := Cbject”~.Next;
new (Currzent” . Next);
Curzent := Curzent”
Curzeant” .Node.x
Curreqt‘.Node.y
~.Nexz :=

.Next;
Cbject”
Object” .Node
nil;

1]

new (Curzant” .Nex<);

141

.Nede.x := Objecz”.Node.

.Node.

.X
-y

.Ncde.
-y

X;

LY

X7

g

+

+

X
Y

+

X
v

+

X

Object”.Node.x - hh * cos(rz):;
QObjectz~.Node.y - hh =

vv *
vv *

sin(r=z
cas(zz

vy *
vy *

vv*sin(zz) -
vv*cos(rr) -

vv*sin(rr; -
vv*cos(rr) -

sin(zz) ;

~r -
~

sin{rz);
cos () ;

hh'ccs(rr)'
hh*sin(zrx)

cais e wa (2T) 2

hh*sin(zD) ;

251 Current := Current”.Next:

252 Current”~.Node.x := Object~.Ncde.x - hh * cos(rcx);
253 Current”~.Node.y := Object”~.Node.y - hh * sin(rr);
254 Current”~.Next := nil;

253

256 Object := Head:;

257

258 if (rr = 0) or (abs(zrz - Pi/2) < 0.00L)

253 then begin

2640 Current := nil;

261 new (Current);

262 Current~.Ncde := Grown".Node;

263 Currentc~.Next := nil;

264

2653 Head := nil;

268 Head := Current;

267 while Grown~.Next”.Next <> nil

268 do begin :

269 new (Current”.Next);

270 Current := Current”.Nex=Z;

271 Grown := Grown~.Next”.Next,
272 Current”~.Ncde := Grown~”.Nocde;
273 Current”~.Next := nil;

274 end;

2753 Grown := Head:;

276 end;

277 end;

278

279

280

281

282

283

284 procedure OrthogonalProjection(Cbhbject : VerticelD;
285 var ObjectXY, Object¥Z, ObjectXZ : VerticelD);
2886 {

287 This procedure project Object in 3D into 3 Objects in 2D.
288 }
289 var

290 Current : Verticel3D;

291 CurrentXY,

292 Current¥Z,

293 CurrentXZ : Verszice2l;

294 X1, X2,

295 Yi, ¥2,

296 Z1, 22 : real;

297

298 begin

299

300 Current := Object:

301
302
303
304
308
3086
307
308
309
310
311
312
313
314
315
3186
317
318
319
320
321
322
323
324
325
3286
327
328
329
330
331
332
333
3354
335
336
337
338
339
340
3421
342
343
344
348
346
347
343
349
350

CbjectXY
Cbject¥Z
ObjectXZ

-
,

nil
n11
nil;

X1
Yl :

-

21

Current~.Node.x:;
Curzent~.Node.y;
Curzent”~.Node.z:;

oo

Currs
nt”*.Node.y;

nt” . Nex<x:;

Currentc :-= Currzent” .Nex=:

X2 := Current~ .Node.x;

Current := Current” .Nex:;
Current := Current”.Nex=<;

22 := Current~.Node.z;

new (ObjectXY) ;
ObjectX¥Y~.Node.x :=
ObjectXY~.Node.v :=
ObjectXY~.Next := nil;

new (Object¥Z) ;

Object¥Z~.Node.x :=
Object¥Z~.Node.y :=
Cbject¥Z~ . Next := nil;

new (ObieczX2) ;

ObjectXZ~.Nede.x :=
CbjectXZ~.Neccde.y := Z2;
ObjectXZ~.Next := nil;

CurrentXY := OblectXY;
Curzent¥Z := Object¥Z;
CurrentXZ := ObjectXZ;

new (CurrsntXY~ .Next);
CurrentXY := CurrentXv~
CurrantXY" .Node.x := X2:
CurzentXY~.Ncde.vy Y2;
CurzantX¥~.Next :=

¢ BN

.
1
- -7

new (Cur-ant¥zZ~ .Nexz) ;
Curzant¥Z := CurrsntVvz~.

Currant¥Z~.Node.x := ¥2;
Current¥Z~ .Node.y := Z2:
nil;

Curzenc¥Z~.Next :=

.Nexzt;

Nextz;

H

(3R W

N

(934

AT ORI

EAETY

et pam
“e‘hv: b

351
352
3s3
354
383
356
357
358
359
380
361
362
363
364
365
366
367
368
369

© 370

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
383
394
393
39¢
397
398
399
400

new (CurrentXZ" .Next)’;

.Next;

CurrentXZ := CurrentXZ”
CurrentX2~ .Node.x := X2;
CurrentXZ~ .Node.y := 22;
CurrentXZ~.Next := nil;

new (CurrenzX¥~ .Next);
CurrentXY := CurrentXi¥”

CcurrentXY~.Node.x := X2
CurrentX?’~.Node.y := Y1
CurrentXY~.Next := nil;

new (Current¥Z~ .Next);

Current¥Z := Current¥2”®
Current¥Z~.Node.x := Y2
Current¥Z~ .Node.y := Z1
CurrentY¥Z~ .Next := nil;

new (CurrentXzZ” .Next);
CurrentX2 := CurrentXZ”®

CurrentXzZ~.Node.x := X2
CurrentXZ~.Node.y := Z1
CurrentXZ~.Next := nil;

new (CurrentXY~ .Next);

CurrentXY := CurrentXI”
CurrentXyY~.Node.x := X1
CurrentX¥~ .Node.y := Y1
CurrentX¥~.Next := nil;
new (Current¥Z” .Next);

CurrzentYZ := Curzent’Z”®
Current¥Z~.Node.x := Y1
Curr=nt¥Z~.Node.y := Z1
Current¥YZz~.Next := nil;
new (CurrentXZ~.Next);

CurrentXZ := CurrentXZ®
CurrentXZ~.Node.x := X1
CurrentXZ~ .Node.y := 21
CurrentXZ~.Next := nil;

end;

procedurs ReconstructCbjec
Vertice

.Next;

.
’

.Next;

.
’

.Next;

.
’

.Nex<T;

.
’

.Nexz;
H

’

£ (ObjectXY¥, Object¥Z, Ob]
2D; var LinkedVertices

e
\)

401
402
403
404
40°¢
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
43¢
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

This pracedure will reconstruct the object from the

3 projected images in 2D.

var
Current
CurrentXY,
Current¥Z,
CurrentXZ : Verticel2D:
X1, Y1, 21,

VerticelD;

X2, Y2, zZ2 real;
begin
LinkedVertices := nil;

new(LinkedVertices);
Current := LinkedVertices;

LinkedVertices~.Next := nil;
CurrentXY := Objec:tXY;
Current¥Z := ObjectY¥Z;
CurrentXZ := CbsectXZ;

while CurrentXY <> nil do
begin
Xl := CurrentXY~.Node.x:
Y1l := CurrentXY~.Node.y;

CurrentXy := CurrentXy~ .Nexz;

while Current¥Z <> nil do
begin
Y2

12 (Y1 = ¥2)

= Currsnt¥Z”~ .Node.x;
2l := Curzent¥Z".Node.y;

N Lo d - - v
Curresnt¥Z := Currzsntvz~

.Next;

then while CurrentXZ <> nil do

begin

X2 := CurrsntXZ~.Node.x;
22 := CurZentXZ~ .Node.y;

CurrentX2

if (21 =

:= CurrentXZ~.Nexz:;
22) and (X1 = X2)

then begin

i
(1]

Current~.Node.x := XI;

Current~.Node.y := Y1;

Current~.Node.z := 21;

Current”~ .Next := nil;

1f (CurrentXY = nil) nd
(Curzent¥Z = nil) and
(CurrentXZ = nil)
then

else begin
new(Currant”~.Next) ;

ORIGINA.. PAGE 1§
OF POCOR QUALITY

—

451
452
453
454
455
458
457
458
4593
460
461
462
463
464
4653
466
487
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
48¢
486
487
4838
489
490
491
492
493
494
495
496
497
498
499
SO0

Currentc

end;
end;
CurrentXZ := ObjeztXZ;
end;
Current¥Z := Object¥YZ;
end;
Current := LinkedVertices;
while Current~.Next~.Next <> nil
do Curresnt := Curreant”.Next;
Current := nil;
end;

begin {(_______opM _____}
raeset (OBJECT) ;
rawrite (PROJECTION) ;

rr := Pi/8&;

rr := Q;

hnl := 1.0;

hh2 := 1.5;

hh3 := 1.0;

vvl := 1.5;

vv2 := 0.5;

vv3 := 0.5;

CreateObjecz (OCbjeczt);
writaln (PRCJECTION, ' Obkject ia 3D:");

writsln (PROJECTION) ;
Print3Dvertice(Object);

CrthogonalProjection(Object, ObjectXY, Object¥Z, ObjectXZ);

writeln (PROJECTION) ;
writeln (PROJECTION) ;

writeln (PROJECTION, ' Image projected in 2D:

writeln (PROJECTION) ;

writeln (PROJECTION, ' (X,Y) projecticn');

Print2Dvertice(ObjectXY);

writeln (PRCJECTICN) ;

writeln (PRCJEZCTION, (Y¥,2) pr
Print2Dvertice(Object¥Y2);

writeln (PROSECTION} ;

()

jectien');

writeln (PROJECTION, ' (X,2) projection');

Print2Dvertice (ObjectX);

GrownObjecz (ObjectX¥, GrownXY, hhl, wvl,

GrownObiject (Object¥Z, Grown¥Z, hhZ, vva,

146

bapad B
rr);

s

12 Curreul .NexT;
end;

501 GrewnObject (Objec=Xxz, GreownXZ, hh3, vv3, r=-);
502

503 writeln(PQOJ;C*ION),

504 wrlteln(PROJECTION),

505 writeln (PROJECTION, ' Grown Image projectad in 2D: ")
sSQe writeln(?® QOJ:C;ION),

507 wrlteln(PROJECTION),

508 writeln (PROJECTION, {(X,Y) Grown Image’) ;

509 PantZDvertlce(GrownXV),

S10 r’:e’n(DROJEC“ION),

511 Jrlteln(DQOJECTION ! (Y¥,2) Grown Image') ;

S12 D**nc’Dve***ce(GrywnY_)

S13 wrvteln(=ROJECxION),

514 wrlte7n(°ROJECTION ! (X,2) Grown Image') ;

S15§ P*lﬂt’DVE**lCE(G”OWnXZ),

S1is6

517 Reconst*uctObject(GrownXY, GrownY?z, GrownXz, LinkedVertices);
518 wrlteln(PROJECTION),

519 writeln (PROJECT ION) ;

520 wrlgeln(PROJLCTION " Cbject in 3D Teconstrucrad o oo ‘7
521 r1t=1n(9={OJECT*ON) '
$22 P*;n'BDve*tlce(LlnkndVe*blces),

523

S24 end; { of Procedurse OPM)

525

526

527

£23

S29 begin {__ Main ——}

£30 OPH(LinkedVertices);

531 end. {__ of Main)

147

Appendix J: I/O FILES for the OPM

[OBJECT]
7 5 3
7 10 3
14 10 3
14 5 3
7 5 12
7 10 12
14 10 12
14 S 12
(PROJECTION]
Qb ject in 3D:
7.0000 $.0000
7.0000 10.0000
14.0000 10.0¢00
14.0000 5.0000
7.0000 5.0000
7.0000 10.000¢0
14.0000 10.0000
14.0000 5.0000

Image projected in 2D:

(X, Y)
7.0000
14.0000
14.0000
7.0000

(¥, 2)
£.dQ0o
10.0000
10.0000
£.0000

crojecticn
10.0000
10.0000
5.0000
5.000¢0

projection
12.00040
12.0000
J.0g0aa
3.0000

[SS2N SO I SN TN §N B OV 3y S Y 0N I OV)

[S S -

o

.0000
.0C00
.00G0O
.0CCQ
.0000
.0C00Q
.0Ca0
.00¢C0

(X,2)

7.40000
14.0000
14.0000

7.0000

12
12

projection
.0009
.00Q9

3.0aaga
3.0000

Grown Image projectad in 2D:

(X,¥) Grown Image

6.0000
14.0000
14.0000

6.0000

(Y,2) Grown Image
12.00900
12.0000
2.5000
2.5040Q0

3.5Q¢C0
10.0000
10.0000
3.5Q00

(X,2) Grown Image
12.0000
12.00090
2.5000
2.5000

6.0000
14.0000
14.0000

6.000Q0

Cobject in

6.0000
6.3000
14.0000
14.000Q
14.000Q0
14.0000
€.0000
6.90C00

10.0000
10.0000
3.5000
3.5000

130

oyey 50 ENToNmiLT A

